Cranberry extracts promote growth of Bacteroidaceae and decrease abundance of Enterobacteriaceae in a human gut simulator model

Autoři: Kathleen O’Connor aff001;  Madeleine Morrissette aff001;  Philip Strandwitz aff001;  Meghan Ghiglieri aff001;  Mariaelena Caboni aff001;  Haiyan Liu aff002;  Christina Khoo aff002;  Anthony D’Onofrio aff001;  Kim Lewis aff001
Působiště autorů: Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, Massachusetts, United States of America aff001;  Global Scientific Affairs and Nutrition Policy, Research and Development, Ocean Spray Cranberries, Inc., Lakeville-Middleboro, Massachusetts, United States of America aff002
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224836


The opportunistic pathogen Escherichia coli, a common member of the human gut microbiota belonging to the Enterobacteriaceae family, is the causative agent of the majority of urinary tract infections (UTIs). The gut microbiota serves as a reservoir for uropathogenic E. coli where they are shed in feces, colonize the periurethral area, and infect the urinary tract. Currently, front line treatment for UTIs consists of oral antibiotics, but the rise of antibiotic resistance is leading to higher rates of recurrence, and antibiotics cause collateral damage to other members of the gut microbiota. It is commonly believed that incorporation of the American cranberry, Vaccinium macrocarpon, into the diet is useful for reducing recurrence of UTIs. We hypothesized such a benefit might be explained by a prebiotic or antimicrobial effect on the gut microbiota. As such, we tested cranberry extracts and whole cranberry powder on a human gut microbiome-derived community in a gut simulator and found that cranberry components broadly modulate the microbiota by reducing the abundance of Enterobacteriaceae and increasing the abundance of Bacteroidaceae. To identify the specific compounds responsible for this, we tested a panel of compounds isolated from cranberries for activity against E. coli, and found that salicylate exhibited antimicrobial activity against both laboratory E. coli and human UTI E. coli isolates. In a gut simulator, salicylate reduced levels of Enterobacteriaceae and elevated Bacteroidaceae in a dose dependent manner.

Klíčová slova:

Antibiotics – Enterobacteriaceae – Escherichia coli – Gut bacteria – Microbiome – Phenols – Urinary tract infections – Salicylates


1. Flores-Mireles A, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 2015 Apr 8;13:269. doi: 10.1038/nrmicro3432 25853778

2. Daoud Z, Salem Sokhn E, Masri K, Matar GM, Doron S. Escherichia coli Isolated from Urinary Tract Infections of Lebanese Patients between 2005 and 2012: Epidemiology and Profiles of Resistance. Front Med 2015 Apr 28;2:26.

3. Shingo Y, Teizo T, Akito T, Hisao K, Yoshifumi T, Osamu Y. Genetic Evidence Supporting the Fecal-Perineal-Urethral Hypothesis in Cystitis Caused by Escherichia Coli. J Urol 1997 Mar 1;157(3):1127–1129. 9072556

4. Spaulding CN, Klein RD, Ruer S, Kau AL, Schreiber HL, Cusumano ZT, et al. Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist. Nat 2017 Jun 14;546:528.

5. Foxman B. The epidemiology of urinary tract infection. Nat Rev Urol 2010 Dec 8;7:653. doi: 10.1038/nrurol.2010.190 21139641

6. Brestoff JR, Artis D. Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol 2013 Jun 18;14:676. doi: 10.1038/ni.2640 23778795

7. Sanz Y, Olivares M, Moya-Perez Ã, Agostoni C. Understanding the role of gut microbiome in metabolic disease risk. Pediatr Res 2014 Oct 14;77:236. doi: 10.1038/pr.2014.170 25314581

8. Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 2017 Jan 16;20:145. doi: 10.1038/nn.4476 28092661

9. Buffie CG, Jarchum I, Equinda M, Lipuma L, Gobourne A, Viale A, et al. Profound Alterations of Intestinal Microbiota following a Single Dose of Clindamycin Results in Sustained Susceptibility to Clostridium difficile-Induced Colitis. Infect Immun 2012 Jan 1;80(1):62. doi: 10.1128/IAI.05496-11 22006564

10. Abt M, Osborne L, Monticelli L, Doering T, Alenghat T, Sonnenberg G, et al. Commensal Bacteria Calibrate the Activation Threshold of Innate Antiviral Immunity. Immunity 2012 Jul 27;37(1):158–170. doi: 10.1016/j.immuni.2012.04.011 22705104

11. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria. Cell 2009 Oct 30;139(3):485–498. doi: 10.1016/j.cell.2009.09.033 19836068

12. Mydock-McGrane L, Cusumano Z, Han Z, Binkley J, Kostakioti M, Hannan T, et al. Antivirulence C-Mannosides as Antibiotic-Sparing, Oral Therapeutics for Urinary Tract Infections. J Med Chem 2016 Oct 27;59(20):9390–9408. doi: 10.1021/acs.jmedchem.6b00948 27689912

13. Spaulding NC, Hultgren JS. Adhesive Pili in UTI Pathogenesis and Drug Development. Pathogens 2016;5(1).

14. Jepson R, Williams G, Craig J. Cranberries for preventing urinary tract infections. Cochrane Database Sys Rev 2012 Oct 17;10.

15. Caillet S, Côté J, Sylvain J, Lacroix M. Antimicrobial effects of fractions from cranberry products on the growth of seven pathogenic bacteria. Food Control 2012 Feb 1;23(2):419–428.

16. Côté J, Caillet S, Doyon G, Dussault D, Sylvain J, Lacroix M. Antimicrobial effect of cranberry juice and extracts. Food Control 2011 Aug; 22(8):1413–1418.

17. Jensen H, Struve C, Christensen S, Krogfelt K. Cranberry Juice and Combinations of Its Organic Acids Are Effective against Experimental Urinary Tract Infection. Front Microbiol 2017 Apr 4;8:52.

18. The Human Microbiome PC, Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, et al. Structure, function and diversity of the healthy human microbiome. Nat 2012 Jun 13;486:207.

19. Zeng MY, Inohara N, Nunez G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol 2016 Aug 24;10:18. doi: 10.1038/mi.2016.75 27554295

20. Comstock LE. Importance of Glycans to the Host-Bacteroides Mutualism in the Mammalian Intestine. Cell Host Microbe 2009 Jun 18;5(6):522–526. doi: 10.1016/j.chom.2009.05.010 19527880

21. Zimmermann P, Curtis N. Antimicrobial Effects of Antipyretics. Antimicrob Agents Chemother 2017 Apr 1;61(4):e02268–16. doi: 10.1128/AAC.02268-16 28137805

22. Duthie GG, Kyle JAM, Jenkinson AM, Duthie SJ, Baxter GJ, Paterson JR. Increased Salicylate Concentrations in Urine of Human Volunteers after Consumption of Cranberry Juice. J Agric Food Chem 2005 Apr 1;53(8):2897–2900. doi: 10.1021/jf040393b 15826036

23. Needs CJ, Brooks PM. Clinical Pharmacokinetics of the Salicylates. Clin Pharmacokinet 1985 Feb 1;10(2):164–177. doi: 10.2165/00003088-198510020-00004 3888490

24. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010 Apr 20;11:373. doi: 10.1038/ni.1863 20404851

25. Park BS, Song DH, Kim HM, Choi B, Lee H, Lee J. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nat 2009 Mar 1;458:1191.

26. Winter SE, Winter MG, Xavier MN, Thiennimitr P, Poon V, Keestra AM, et al. Host-Derived Nitrate Boosts Growth of E. coli in the Inflamed Gut. Science 2013 Feb 8;339(6120):708. doi: 10.1126/science.1232467 23393266

27. Winter SE, Lopez CA, Baumler AJ. The dynamics of gut-associated microbial communities during inflammation. EMBO Rep 2013 Apr;14(4):319–327 doi: 10.1038/embor.2013.27 23478337

28. Strandwitz P, Kim KH, Terekhova D, Liu JK, Sharma A, Levering J, et al. GABA-modulating bacteria of the human gut microbiota. Nat Microbiol 2019 Mar 1;4(3):396–403. doi: 10.1038/s41564-018-0307-3 30531975

29. Rettedal EA, Gumpert H, Sommer MOA. Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria. Nat Commun 2014 Aug 28;5:4714. doi: 10.1038/ncomms5714 25163406

30. Martin MA, Ramos S, Mateos R, Marais JPJ, Bravo-Clemente L, Khoo C, et al. Chemical characterization and chemo-protective activity of cranberry phenolic powders in a model cell culture. Response of the antioxidant defenses and regulation of signaling pathways. Food Res Int 2015 May 1;71:68–82.

31. Molly K, Vande Woestyne M, Verstraete W. Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl Microbiol Biotechnol 1993 May 1;39(2):254–258. doi: 10.1007/bf00228615 7763732

Článek vyšel v časopise


2019 Číslo 11