Can altered magnetic field affect the foraging behaviour of ants?


Autoři: Márlon César Pereira aff001;  Ingrid de Carvalho Guimarães aff002;  Daniel Acosta-Avalos aff004;  William Fernando Antonialli Junior aff001
Působiště autorů: Programa de Pós-graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil aff001;  Laboratório de Ecologia Comportamental, Center of Studies on Natural Resources, Universidade Estadual de Mato Grosso do Sul, Dourados, Mato Grosso do Sul, Brazil aff002;  Programa de Pós-graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, Mato Grosso do Sul, Brazil aff003;  Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Rio de Janeiro, Brazil aff004
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225507

Souhrn

Social insects such as ants can use geomagnetic field information in orientation and navigation tasks. However, few studies have assessed the effect of magnetic fields on aspects such as orientation and decision making during foraging of ants. Therefore, the present study aims to test the hypothesis that foragers of different species of ants with different foraging strategies when under effect of applied magnetic field change the patterns of search for resources and recruitment of ants. We used two species with solitary foraging strategy, Ectatomma brunneum and Neoponera inversa, and another with mass recruitment, Pheidole sp. The experiments were performed in field and laboratory conditions. We used some parameters for comparison such as speed, distance and time during foraging in the field and laboratory experiments, under normal and applied magnetic field with the coils on and off. We also performed SQUID magnetometry analysis for all species. The results demonstrate that changes in normal values of magnetic field affect workers behaviour of the three species. Thus, we can conclude that ants under the effect of applied magnetic fields can suffer significant changes in their foraging activities decreasing the flow of workers, increasing the travelled distance from the nest to the resource and back to the nest, in addition to time and distance to fetch the resource and decision-making, in both types of species, those which have mass recruitment, or forage individually, and that the three species are magnetosensitive, being affected by changes of low intensity in the local magnetic field.

Klíčová slova:

Ants – Decision making – Foraging – Magnetic fields – Nanoparticles – Social systems – Geomagnetism


Zdroje

1. Jardine M. Sunscreen for the young Earth. Science. 2010;327: 1206–1207. doi: 10.1126/science.1187051 20203036

2. Kirschvink JL, Walker MM, Diebel CE. Magnetite-based magnetoreception. Curr Opin Neurobiol. 2001;11: 462–467. doi: 10.1016/s0959-4388(00)00235-x 11502393

3. Johnsen S, Lohmann KJ. The physics and neurobiology of magnetoreception. Nature Rev Neurosci. 2005;6: 703–712. https://doi.org/10.1038/nrn1745

4. Wiltschko R, Stapput K, Ritz T, Thalau P, Wiltschko W. Magnetoreception in birds: different physical processes for two types of directional responses. HFSP Journal. 2007;1(1): 41–48. doi: 10.2976/1.2714294/10.2976/1 19404459

5. Kalmijn AJ. Biophysics of geomagnetic field detection. IEEE T Magn. 1981;17: 1113–1124. doi: 10.1109/TMAG.1981.1061156

6. Winklhofer M. Magnetoreception J Royal Soc Interface. 2010;7(2): S131–S134. doi: 10.1098/rsif.2010.0010.focus 20129954

7. Ritz T, Wiltschko R, Hore PJ, Rodgers CT, Stapput K, Thalau P, et al. Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Biophys J. 2009;96: 3451–3457. doi: 10.1016/j.bpj.2008.11.072 19383488

8. Hsu CY, Ko FY, Li CW, Fann K, Lue JT. Magnetoreception system in honeybees (Apis mellifera). PLoS One. 2007;2: e395. doi: 10.1371/journal.pone.0000395 17460762

9. Wajnberg E, Rossi AL, Esquivel DMS. Titanium and iron titanium oxide nanoparticles in antennae of the migratory ant Pachycondyla marginata: an alternative magnetic sensor for magnetoreception? Biometals. 2017;30: 541–548. doi: 10.1007/s10534-017-0024-z 28608290

10. Tomanova K, Vacha M. The magnetic orientation of the Antarctic amphipod Gondogeneia antarctica is cancelled by very weak radiofrequency fields. J Exp Biol. 2016;219: 1717–1724. doi: 10.1242/jeb.132878 27026715

11. Phillips JB. Two magnetoreception pathways in a migratory salamander. Science. 1986;233: 765–767. doi: 10.1126/science.3738508 3738508

12. Quinn TP. Evidence for celestial and magnetic compass orientation in lake migrating sockeye salmon fry. J Comp Physiol A. 1980;137: 243–248. doi: 10.1007/BF00657119

13. Lohmann KJ. Magnetic orientation by hatchling loggerhead sea turtles (Caretta caretta). J Exp Biol. 1991;155: 37–49. PubMed 2016575

14. Walcott C, Green RP. Orientation of homing pigeons altered by a change in the direction of an applied magnet field. Science. 1974;184: 180–182. doi: 10.1126/science.184.4133.180 4815725

15. Gundmundsson GA, Sandberg R. Sanderlings (Calidris alba) have a magnetic compass: orientation experiments during spring migration in Iceland. J Exp Biol. 2000;203(20): 3137–3144. PubMed 11003824

16. Marhold S, Burda H, Wiltschko W. A magnetic polarity compass for direction finding in a subterranean mammal. Naturwissenschaften. 1997;84: 421–423. https://doi.org/10.1007/s001140050422

17. Vacha M. Magnetic orientation in insects. Biologia. 1997;52: 629–636.

18. Wajnberg E, Acosta-Avalos D, Alves OC, de Oliveira JF, Srygley RB, Esquivel DM. Magnetoreception in eusocial insects: an update. J Royal Soc Interface. 2010;7: S207–S225. doi: dx.doi.org/10.1098/rsif.2009.0526.focus

19. Pereira-Bomfim MGC, Antonialli-Junior WF, Acosta-Avalos D. Effect of magnetic field on the foraging rhythm and behavior of the swarm-founding paper wasp Polybia paulista Ihering (Hymenoptera: Vespidae). Sociobiology. 2015;62(1): 99–104. doi: 10.13102/sociobiology.v62i1.99–104

20. Billen J. Signal variety and communication in social insects. Proc Neth Entomol Soc Meet. 2006;17: 9–25. doi: 10.1.1.186.3565

21. Hölldobler B, Wilson EO. The ants. 1st ed. Cambridge: Harvard University Press; 1990.

22. Traniello JFA, Robson SK. Trail and territorial communication in social insects. Chem Ecol Insects. 1995;2: 241–86. https://doi.org/10.1007/978-1-4615-1765-8_7

23. Perna A, Granovskiy B, Garnier S, Nicolis SC, Labedan M, Theraulaz G, et al. Individual rules for trail pattern formation in Argentine ants (Linepithema humile). PLoS Comput Biol. 2012;8(7): e1002592. doi: 10.1371/journal.pcbi.1002592 22829756

24. Franks NR, Gomez N, Goss S, Deneubourg JL. The blind leading the blind in army ant raid patterns–testing a model of self organization (Hymenoptera, Formicidae). J Insect Behav. 1991;4: 583–607. https://doi.org/10.1007/BF01048072

25. Solé RV, Bonabeau E, Delgado J, Fernández P, Marín J. Pattern formation and optimization in army ant raids. Artif Life. 2000;6: 219–226. doi: 10.1162/106454600568843 11224916

26. Berthouze L, Lorenzi A. Bifurcation angles in ant foraging networks: A trade-off between exploration and exploitation? J Theor Biol. 2008;12: 113–122. https://doi.org/10.1007/978-3-540-69134-1_12

27. Acosta FJ, López F, Serrano JM. Branching angles of ant trunk trails as an optimization cue. J Theor Biol. 1993;160: 297–310. https://doi.org/10.1006/jtbi.1993.1020

28. Buhl J, Hicks K, Miller ER, Persey S, Alinvi O, Sumpter DJT. Shape and efficiency of wood ant foraging networks. Behav Ecol Sociobiol. 2009;63: 451–460. https://doi.org/10.1007/s00265-008-0680-7

29. Latty T, Ramsch K, Ito K, Nakagaki T, Sumpter DJT, Middendorf M, et al. Structure and formation of ant transportation networks. J Royal Soc Interface. 2011;8: 1298–1306. doi: 10.1098/rsif.2010.0612 21288958

30. Reid CR, Sumpter DJT, Beekman M. Optimisation in a natural system: Argentine ants solve the towers of hanoi. J Exp Biol. 2011;214: 50–58. doi: 10.1242/jeb.048173 21147968

31. Gottwald WH Jr. The army ants: The biology of social predation. 1 st ed. Ithaca: Cornell University Press; 1995.

32. Wirth R, Beyschlag W, Ryel RJ, Hölldobler B. Annual foraging of the leaf-cutting ant Atta colombica in a semideciduous rain forest in Panama. J Trop Ecol. 1997;13: 741–757. https://doi.org/10.1017/S0266467400010907

33. Wiltschko W, Wiltschko R. Magnetic orientation and magnetoreception in birds and other animals. J Comp Physiol A. 2005;191: 675–693. doi: 10.1007/s00359-005-0627-7 15886990

34. Krylov VV, Osipova E.A., Izyumov YG. Orientational behavior of animals with the geomagnetic field and mechanisms of magnetoreception. Izv Atmos Oceanic Phys. 2015;51: 752–765. doi: 10.1134/s0001433815070051

35. Riveiros AJ, Srygley RB. Migration, orientation and navigation: magnetic compasses in insects. In: Breed MD, Moore J, editors. Encyclopedia of Animal Behavior. Oxford: Elsevier/Academic Press; 2010. pp. 305–313.

36. Kermarrec A. Sensibilite a un champ magnetique artificial et reaction d’evitement chez Acromyrmex octospinosus (Reich) (Formicidae, Attini). Insectes Soc. 1981;28: 40–46. https://doi.org/10.1007/BF02223621

37. Anderson JB, Vander Meer RK. Magnetic orientation in the fire ant, Solenopsis invicta. Naturwissenschaften. 1993;80: 568–570. https://doi.org/10.1007/BF01149274

38. Çamlitepe Y, Aksoy V, Neslihan U, Ayse Y, Becenen I. An experimental analysis on the magnetic field sensitivity of the black-meadow ant Formica pratensis Retzius (Hymenoptera: Formicidae). Acta Biol Hung. 2005;56: 215–224. doi: 10.1556/ABiol.56.2005.3-4.5 16196197

39. Jander R, Jander U. The light and magnetic compass of the weaver ant, Oecophylla smaragdina (Hymenoptera: Formicidae). Ethology. 1998;104: 743–758. https://doi.org/10.1111/j.1439-0310.1998.tb00108.x

40. Acosta-Avalos D, Esquivel DMS, Wajnberg E, Lins de Barros HGP, Oliveira PS, Leal I. Seasonal patterns in the orientation system of the migratory ant Pachycondyla marginata. Naturwissenschaften. 2001;88: 343–346. doi: 10.1007/s001140100245 11572016

41. Banks AN, Srygley RB. Orientation by magnetic field in leaf-cutter ants, Atta colombica (Hymenoptera: Formicidae). Ethology. 2003;109: 835–846. https://doi.org/10.1046/j.0179-1613.2003.00927.x

42. Sandoval EL, Wajnberg E, Esquivel DMS, Lins de Barros H, Acosta-Avalos D. Magnetic orientation in Solenopsis sp. ants. J Insect Behav. 2012;25: 612–619. doi: 10.1007/s10905-012-9327-7

43. Buehlmann C, Hansson BS, Knaden M. Desert ants learn vibration and magnetic landmarks. PloS One. 2012;7: e33117. doi: 10.1371/journal.pone.0033117 22412989

44. Fleischmann PN, Grob R, Muller VL, Wehner R, Rossler W. The geomagnetic field is a compass cue in Cataglyphis ant navigation. Current Biology. 2018;28: 1440–1444. doi: 10.1016/j.cub.2018.03.043 29706513

45. Balmori A. Anthropogenic radiofrequency electromagnetic fields as an emerging threat to wildlife orientation. Sci Total Environ. 2015;518–519: 58–60. doi: 10.1016/j.scitotenv.2015.02.077 25747364

46. Cammaerts MC, Morel F, Martino F, Warzée N. An easy, cheap computerized method to assess two-dimensional trajectory parameters. Belgian J Zool. 2012;142(2): 147–153.

47. Altman J. Observational study of behaviour: sampling methods. Behaviour. 1974;49: 227–267. doi: 10.1163/156853974x00534 4597405

48. Walz F. The Verwey transition—a topical review. J Phys Condens Matter. 2002;14: R285. https://doi.org/10.1088/0953-8984/14/12/203

49. Dunlop DJ. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. J Geophys Res. 2002;107: EPM 4-1–EPM 4–22. https://doi.org/10.1029/2001JB000486

50. Kumari M, Hirt AM, Uebe R, Schuler D, Tompa E, Posfai M, et al. Experimental mixtures of superparamagnetic and single domain magnetite with respect to Day-Dunlop plots. Geochem Geophys Geosyst. 2015;16: 1739–1752. https://doi.org/10.1002/2015GC005744

51. Hansen MF, Morup S. Estimation of blocking temperatures from ZFC/FC curves. J Magn Magn Mater. 1999;203: 214–216. https://doi.org/10.1016/S0304-8853(99)00238-3

52. Peck MA, Huh Y, Skomski R, Zhang R, Kharel P, Allison MD, et al. Magnetic properties of NiO and (Ni,Zn)O nanoclusters. J Appl Phys. 2011;109: 07B518. https://doi.org/10.1063/1.3556953

53. Walther GR, Post E, Convey P, Menzel A, Parmesank C, Beebee TJC, et al. Ecological responses to recent climate change. Nature 2002;416: 389–395. doi: 10.1038/416389a 11919621

54. Vasseur DA, DeLong JP, Gilbert B, Greig HS, Harley CDG, McCann KS, et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. Lond. B. Biol. Sci. 2014;281: 20132612. doi: 10.1098/rspb.2013.2612 24478296

55. Woods HA, Dillon ME, Pincebourde S. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J. Thermal. Biol. 2015;54: 86–97. doi: 10.1016/j.jtherbio.2014.10.002 26615730

56. Pie MR. Behavioral repertoire, age polyetism and adult transport in Ectatomma opaciventre (Formicidae: Ponerinae). J Insect Behav. 2002;15(1): 25–35. https://doi.org/10.1023/A:1014475927822

57. Miguel TB, Del-Claro K. Polietismo etário e repertório comportamental de Ectatomma opaciventre Roger, 1861 (Formicidae, Ponerinae). Rev Bras Zoo. 2005;7(2): 285–296.

58. Prozorov R, Prozorov T, Mallapragada SK, Narasimhan B, Williams TJ, Bazylinski DA. Magnetic irreversibility and the Verwey transition in nanocrystalline bacterial magnetite. Phys Rev B. 2007;76: 054406. https://doi.org/10.1103/PhysRevB.76.054406

59. Oliveira JF, Wajnberg E, Esquivel DMS, Weinkauf S, Winklhofer M, Hanzlik M. Ant antennae: are they sites for magnetoreception? J Royal Soc Interface. 2010;7: 143–152. doi: 10.1098/rsif.2009.0102 19474081

60. Wajnberg E, Cernicchiaro G, Esquivel DMS. Antennae: the strongest magnetic part of the migratory ant. Biometals. 2004;17: 467–470. doi: 10.1023/b:biom.0000029443.93732.62 15259368

61. Weaver JC, Wang Q, Miserez A, Tantuccio A, Stromberg R, Bozhilov KN, et al. Analysis of an ultra hard magnetic biomineral in chiton radular teeth. Mater Today. 2010;13: 42–52. https://doi.org/10.1016/S1369-7021(10)70016-X

62. Bennet M, McCarthy A, Fix D, Edwards MR, Repp E, Vach P, et al. Influence of magnetic fields on magneto-aerotaxis. PLoS One. 2014;9: e101150. doi: 10.1371/journal.pone.0101150 24983865


Článek vyšel v časopise

PLOS One


2019 Číslo 11