Discovery of powdery mildew resistance gene candidates from Aegilops biuncialis chromosome 2Mb based on transcriptome sequencing


Autoři: Huanhuan Li aff001;  Zhenjie Dong aff001;  Chao Ma aff001;  Xiubin Tian aff001;  Zhiguo Xiang aff002;  Qing Xia aff001;  Pengtao Ma aff003;  Wenxuan Liu aff001
Působiště autorů: College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan Province, China aff001;  Wheat Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan Province, China aff002;  College of Life Sciences, Yantai University, Yantai, Shandong Province, China aff003
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0220089

Souhrn

Powdery mildew is one of the most widespread diseases of wheat. The development and deployment of resistant varieties are one of the most economical and effective methods to manage this disease. Our previous study showed that the gene(s) at 2Mb in Chinese Spring (CS)-Aegilops biuncialis 2Mb disomic addition line TA7733 conferred a high level of resistance to powdery mildew of wheat. In this study, resistance spectrum of TA7733 was assayed by using 15 Blumeria graminis f. sp. tritici (Bgt) isolates prevalent in different regions of China. The result indicated that TA7733 was highly resistant to all tested Bgt isolates and the gene(s) on chromosome 2Mb conferred broad-spectrum resistance to powdery mildew. In order to characterize mechanism of powdery mildew resistance by identifying candidates R-genes derived from Ae. biuncialis chromosome 2Mb and develop 2Mb-specific molecular markers, we performed RNA-seq analysis on TA7733 and CS. In total we identified 7,278 unigenes that showed specific expression in TA7733 pre and post Bgt-infection when compared to CS. Of these 7,278 unigenes, 295 were annotated as putative resistance (R) genes. Comparatively analysis of R-gene sequences from TA7733 and CS and integration CS Ref Seq v1.0 were used to develop R-gene specific primers. Of 295 R-genes we identified 53 R-genes were specific to 2Mb and could be involved in powdery mildew resistance. Functional annotation of majority of the 53 R-genes encoded nucleotide binding leucine rich repeat (NLR) protein. The broad-spectrum resistance to powdery mildew in TA7733 and availability of 2Mb-derived putative candidate R-gene specific molecular markers identified in this study will lay foundations for transferring powdery mildew resistance from 2Mb to common wheat by inducing CS-Ae. biuncialis homoeologous recombination. Our study also provides useful candidates for further isolation and cloning of powdery mildew resistance gene(s) from Ae. biuncialis chromosome 2Mb.

Klíčová slova:

Arabidopsis thaliana – Chromosome mapping – Polymerase chain reaction – Powdery mildew – RNA sequencing – Transcriptome analysis – Wheat – Common wheat


Zdroje

1. Ramirez-Gonzalez RH, Segovia V, Bird N, Fenwick P, Holdgate S, Berry S, et al. RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol J. 2015; 13: 613–624. doi: 10.1111/pbi.12281 25382230

2. Fu DL, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen XM, et al. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science. 2009; 323: 1357–1360. doi: 10.1126/science.1166289 19228999

3. Griffey C, Das M, Stromberg EJ. Effectiveness of adult-plant resistance in reducing grain yield loss to powdery mildew in winter wheat. Plant Dis. 1993; 77: 618–622.

4. Li GQ, Carver BF, Cowger C, Bai GH, Xu XY. Pm223899, a new recessive powdery mildew resistance gene identified in Afghanistan landrace PI223899. Theor Appl Genet. 2018; 131: 2775–2783. doi: 10.1007/s00122-018-3199-y 30327847

5. Ma PT, Xu HX, Luo QL, Qie YM, Zhou YL, Xu YF, et al. Inheritance and genetic mapping of a gene for seedling resistance to powdery mildew in wheat line X3986-2. Euphytica. 2014; 200: 149–157.

6. Morgounov A, Tufan HA, Sharma R, Akin B, Bagci A, Braun HJ, et al. Global incidence of wheat rusts and powdery mildew during 1969–2010 and durability of resistance of winter wheat variety Bezostaya 1. Eur J Plant Pathol. 2012; 132: 323–340.

7. Huang J, Zhao ZH, Song FJ, Wang XM, Xu HX, Huang Y, et al. Molecular detection of a gene effective against powdery mildew in the wheat cultivar Liangxing 66. Mol Breed. 2012; 30: 1737–1745.

8. Zhang DY, Zhu KY, Dong LL, Liang Y, Li GQ, Fang TL, et al. Wheat powdery mildew resistance gene Pm64 derived from wild emmer (Triticum turgidum var. dicoccoides) is tightly linked in repulsion with stripe rust resistance gene Yr5. 2019; https://doi.org/10.1016/j.cj.2019.03.003.

9. Zou SH, Wang H, Li YW, Kong ZS, Tang DZ. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytol. 2018; 218: 298–309. doi: 10.1111/nph.14964 29281751

10. McDonald BA, Linde C. Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol. 2002; 40: 349–379. doi: 10.1146/annurev.phyto.40.120501.101443 12147764

11. Xiao MG, Song FJ, Jiao JF, Wang XM, Xu HX, Li HJ. Identification of the gene Pm47 on chromosome 7BS conferring resistance to powdery mildew in the Chinese wheat landrace Hongyanglazi. Theor Appl Genet. 2013; 126: 1397–1403. doi: 10.1007/s00122-013-2060-6 23429903

12. Ma PT, Xu HX, Zhang HX, Li LH, Xu YF, Zhang XT, et al. The gene PmWFJ is a new member of the complex Pm2 locus conferring unique powdery mildew resistance in wheat breeding line Wanfengjian 34. Mol Breed. 2015; 35: 210.

13. Summers R, Brown J. Constraints on breeding for disease resistance in commercially competitive wheat cultivars. Plant Pathol. 2013; 62: 115–121.

14. Resta P, Zhang HB, Dubcovsky J, Dvořák J. The origins of the genomes of Triticum biunciale, T. ovatum, T. neglectum, T. columnare, and T. rectum (Poaceae) based on variation in repeated nucleotide sequences. Am J Bot. 1996; 83: 1556–1565.

15. Badaeva E, Amosova A, Samatadze T, Zoshchuk S, Shostak N, Chikida N, et al. Evolution, Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Sys Evol. 2004; 246: 45–76.

16. Damania AB, Pecetti L. Variability in a collection of Aegilops species and evaluation for yellow rust resistance at two locations in northern Syria. J Genet Breed. 1990; 44: 97–102.

17. Dimov A, Zaharieva M, Mihova S. Rust and powdery mildew resistance in Aegilops accessions from Bulgaria. In: Damania AB, editors. 1993. pp. 165–169.

18. Makkouk K, Ghulam W, Comeau A. Resistance to barley yellow dwarf luteovirus in Aegilops species. Can J Plant Sci. 1994; 74: 631–634.

19. Zhao H, Zhang W, Wang J, Li F, Cui F, Ji J, et al. Comparative study on drought tolerance of wheat and wheat-Aegilops biuncialis 6Ub addition lines. J Food Agric Environ. 2013; 11: 1046–1052.

20. Molnár I, Gáspár L, Sárvári É, Dulai S, Hoffmann B, Molnár-Láng M, et al. Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Funct Plant Biol. 2004; 31: 1149–1159.

21. Colmer TD, Flowers TJ, Munns, R. Use of wild relatives to improve salt tolerance in wheat. J Exp Bot. 2006; 57: 1059–1078. doi: 10.1093/jxb/erj124 16513812

22. Farkas A, Molnár I, Dulai S, Rapi S, Oldal V, Cseh A, et al. Increased micronutrient content (Zn, Mn) in the 3Mb(4B) wheat-Aegilops biuncialis substitution and 3Mb.4BS translocation identified by GISH and FISH. Genome. 2014; 57: 61–67. doi: 10.1139/gen-2013-0204 24702063

23. Zhou JP, Yao CH, Yang EN, Yin MQ, Liu C, Ren ZL. Characterization of a new wheat-Aegilops biuncialis addition line conferring quality-associated HMW glutenin subunits. Genet Mol Res. 2014; 13: 660–669. doi: 10.4238/2014.January.28.11 24615031

24. Schneider A, Linc G, Molnár I, Molnár-Láng M. Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of 5 derived wheat-Aegilops biuncialis disomic addition lines. Genome. 2005; 48: 1070–1082. doi: 10.1139/g05-062 16391676

25. Schneider A, Molnar-Lang M. Detection of various U and M chromosomes in wheat-Aegilops biuncialis hybrids and derivatives using fluorescence in situ hybridisation and molecular markers. Czech J Genet Plant Breed. 2012; 48: 169–177.

26. Xia Q, Mai YN, Dong ZJ, Liu WX. Identification of powdery mildew resistance resources from wheat-wild relative disomic addition lines and development of molecular markers of alien chromosome-specialty. J Henan Agric Sci. 2018; 47: 64–69.

27. Wang ZZ, Li HW, Zhang DY, Guo L, Chen JJ, Chen YX, et al. Genetic and physical mapping of powdery mildew resistance gene MlHLT in Chinese wheat landrace Hulutou. Theor Appl Genet. 2015; 128: 365–373. doi: 10.1007/s00122-014-2436-2 25471672

28. He HG, Zhu SY, Zhao RH, Jiang ZN, Ji YY, Ji J, et al. Pm21, encoding a typical CC-NBS-LRR protein, confers broad-spectrum resistance to wheat powdery mildew disease. Mol Plant. 2018; 11: 879–882. doi: 10.1016/j.molp.2018.03.004 29567454

29. Cao AZ, Xing LP, Wang XY, Yang XM, Wang W, Sun YL, et al. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci. 2011; 108: 7727–7732. doi: 10.1073/pnas.1016981108 21508323

30. Wang KY, Lin ZS, Wang L, Wang K, Shi QH, Du LP, et al. Development of a set of PCR markers specific to Aegilops longissima chromosome arms and application in breeding a translocation line. Theor Appl Genet. 2018; 131: 13–25. doi: 10.1007/s00122-017-2982-5 28887628

31. Li SJ, Wang J, Wang KY, Chen JN, Wang K, Du LP, et al. Development of PCR markers specific to Dasypyrum villosum genome based on transcriptome data and their application in breeding Triticum aestivum-D. villosum#4 alien chromosome lines. BMC Genomics. 2019; 20: 289. doi: 10.1186/s12864-019-5630-4 30987602

32. Rubio M, Rodríguez-Moreno L, Ballester AR, Moura MC, Bonghi C, Candresse T, et al. Analysis of gene expression changes in peach leaves in response to Plum pox virus infection using RNA-Seq. Mol Plant Pathol. 2015; 16: 164–176. doi: 10.1111/mpp.12169 24989162

33. Zhang H, Fu Y, Guo H, Zhang L, Wang CY, Song WN, et al. Transcriptome and proteome-based network analysis reveals a model of gene activation in wheat resistance to stripe rust. Int J Mol Sci. 2019; 20: 1106.

34. Zhang H, Yang YZ, Wang CY, Liu M, Li H, Fu Y, et al. Large-scale transcriptome comparison reveals distinct gene activations in wheat responding to stripe rust and powdery mildew. BMC genomics. 2014; 15: 898. doi: 10.1186/1471-2164-15-898 25318379

35. Li QQ, Niu ZB, Bao YG, Tian QJ, Wang HG, Kong LR, et al. Transcriptome analysis of genes related to resistance against powdery mildew in wheat-Thinopyrum alien addition disomic line germplasm SN6306. Gene. 2016; 590: 5–17. doi: 10.1016/j.gene.2016.06.005 27265028

36. Huang XY, Zhu MQ, Zhuang LF, Zhang SY, Wang JJ, Chen XJ, et al. Structural chromosome rearrangements and polymorphisms identified in Chinese wheat cultivars by high-resolution multiplex oligonucleotide FISH. Theor Appl Genet. 2018; 131: 1967–1986. doi: 10.1007/s00122-018-3126-2 29947816

37. Li HH, Jiang B, Wang JC, Lu YQ, Zhang JP, Pan CL, et al. Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P. Theor Appl Genet. 2017; 130: 109–121. doi: 10.1007/s00122-016-2797-9 27771744

38. Liu WX, Koo DH, Xia Q, Li CX, Bai FQ. Song YL, et al. Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant gene Pm57 from Aegilops searsii into wheat. Theor Appl Genet. 2017; 130: 841–848. doi: 10.1007/s00122-017-2855-y 28116459

39. Du P, Zhuang LF, Wang YZ, Yuan L, Wang Q, Wang DR, et al. Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes. Genome. 2016; 60: 93–103. doi: 10.1139/gen-2016-0095 27936984

40. Li GQ, Fang TL, Zhang HT, Xie CJ, Li HJ, Yang T, et al. Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet. 2009; 119: 531–539. doi: 10.1007/s00122-009-1061-y 19471905

41. Li WT, Zhu ZW, Chern M, Yin JJ, Yang C, Ran L, et al. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell. 2017; 170: 114–126. doi: 10.1016/j.cell.2017.06.008 28666113

42. Zhuang L, Sun L, Li AX, Chen TT, Qi ZJ. Identification and development of diagnostic markers for a powdery mildew resistance gene on chromosome 2R of Chinese rye cultivar Jingzhouheimai. Mol Breed. 2011; 27: 455–465.

43. Jiang J, Friebe B, Gill BS. Recent advances in alien gene transfer in wheat. Euphytica. 1993; 73: 199–212.

44. Zhang RQ, Fan YL, Kong LN, Wang ZJ, Wu JZ, Xing LP, et al. Pm62, an adult-plant powdery mildew resistance gene introgressed from Dasypyrum villosum chromosome arm 2VL into wheat. Theor Appl Genet. 2018; 131: 2613–2620. doi: 10.1007/s00122-018-3176-5 30167758

45. Tan GX, Liu K, Kang JM, Xu KD, Zhang Y, Hu LZ, et al. Transcriptome analysis of the compatible interaction of tomato with Verticillium dahliae using RNA-sequencing. Front Plant Sci. 2015; 6: 428. doi: 10.3389/fpls.2015.00428 26106404

46. Xiao J, Jin XH, Jia XP, Wang HY, Cao AZ, Zhao WP, et al. Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai. BMC Genomics. 2013; 14: 197. doi: 10.1186/1471-2164-14-197 23514540

47. Hao YB, Wang T, Wang K, Wang XJ, Fu YP, Huang LL, et al. Transcriptome analysis provides insights into the mechanisms underlying wheat plant resistance to stripe rust at the adult plant stage. PLoS One. 2016; 11: e0150717. doi: 10.1371/journal.pone.0150717 26991894

48. Wang DF, Wang XB, Mei Y, Dong HS. The wheat homolog of putative nucleotide-binding site-leucine-rich repeat resistance gene TaRGA contributes to resistance against powdery mildew. Funct Integr Genomics. 2016; 16: 115–126. doi: 10.1007/s10142-015-0471-y 26815536

49. Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, et al. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol. 2016; 17: 221. doi: 10.1186/s13059-016-1082-1 27795210

50. Yahiaoui N, Srichumpa P, Dudler R, Keller B. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J. 2004; 37: 528–538. doi: 10.1046/j.1365-313x.2003.01977.x 14756761

51. Hurni S, Brunner S, Buchmann G, Herren G, Jordan T, Krukowski P, et al. Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. Plant J. 2013; 76: 957–969. doi: 10.1111/tpj.12345 24124925

52. Xing LP, Hu P, Liu JQ, Witek K, Zhou S, Xu JF, et al. Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol Plant. 2018; 11: 874–878. doi: 10.1016/j.molp.2018.02.013 29567451

53. Du WL, Wang J, Lu M, Sun SG, Chen XH, Zhao JX, et al. Characterization of a wheat-Psathyrostachys huashanica Keng 4Ns disomic addition line for enhanced tiller numbers and stripe rust resistance. Planta. 2014; 239: 97–105. doi: 10.1007/s00425-013-1957-2 24085532

54. King I, Purdie K, Rezanoor H, Koebner R, Miller T, Reader S, et al. Characterization of Thinopyrum bessarabicum chromosome segments in wheat using random amplified polymorphic DNAs (RAPDs) and genomic in situ hybridization. Theor Appl Genet. 1993; 86: 895–900. doi: 10.1007/BF00211038 24193994

55. Song LQ, Lu YQ, Zhang JP, Pan CL, Yang XM, Li XQ, et al. Physical mapping of Agropyron cristatum chromosome 6P using deletion lines in common wheat background. Theor Appl Genet. 2016; 129: 1023–1034. doi: 10.1007/s00122-016-2680-8 26920547

56. Li SJ, Lin ZS, Liu C, Wang K, Du LP, Ye XG. Development and comparative genomic mapping of Dasypyrum villosum 6V#4S-specific PCR markers using transcriptome data. Theor Appl Genet. 2017; 130: 2057–2068. doi: 10.1007/s00122-017-2942-0 28653149

57. Gupta P, Rustgi S. Molecular markers from the transcribed/expressed region of the genome in higher plants. Funct Integr Genomics. 2004; 4: 139–162. doi: 10.1007/s10142-004-0107-0 15095058

58. Zhang HY, Wei LB, Miao HM, Zhang TD, Wang CY. Development and validation of genic-SSR markers in sesame by RNA-seq. BMC Genomics. 2012; 13: 316. doi: 10.1186/1471-2164-13-316 22800194


Článek vyšel v časopise

PLOS One


2019 Číslo 11