Effective methods for the inactivation of Francisella tularensis


Autoři: Mika Azaki aff001;  Akihiko Uda aff001;  Deyu Tian aff003;  Katsuyoshi Nakazato aff002;  Akitoyo Hotta aff001;  Yasuhiro Kawai aff004;  Keita Ishijima aff001;  Yudai Kuroda aff001;  Ken Maeda aff001;  Shigeru Morikawa aff001
Působiště autorů: Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo Japan aff001;  Department of Correlative Study in Physics and Chemistry, Graduate School of Integrated Basic Sciences, Nihon University, Tokyo, Japan aff002;  CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China aff003;  Division of Biosafety Control and Research, National Institute of Infectious Diseases, Tokyo, Japan aff004;  Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan aff005
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225177

Souhrn

Francisella tularensis (F. tularensis) is highly pathogenic to humans and must be handled under biosafety level 3 conditions. Samples used for the diagnosis and experimental analysis must be completely inactivated, although methods for the inactivation of F. tularensis are limited. In this study, effective methods for the inactivation of F. tularensis SCHU P9 and five other strains were determined by comparisons of colony-forming units between treated and control samples. The results showed that F. tularensis SCHU P9 was denatured by heat treatment (94°C for 3 min and 56°C for 30 min), filtration with a 0.22 μm filter, and the use of various solutions (i.e. >70% ethanol, methanol, acetone, and 4% paraformaldehyde). F. tularensis SCHU P9 remained viable after treatment with 50% ethanol for 1 min, filtration with a 0.45 μm filter, and treatments with detergents (i.e. 1% lithium dodecyl sulfate buffer, 1% Triton X-100 and 1% Nonidet P-40) at 4°C for 24 h. Additionally, F. tularensis SCHU P9 suspended in fetal bovine serum in plastic tubes was highly resistant to ultraviolet radiation compared to suspensions in water and chemically defined medium. The methods for inactivation of F. tularensis SCHU P9 was applicable to the other five strains of F. tularensis. The data presented in this study could be useful for the establishment of guidelines and standard operating procedures (SOP) to inactivate the contaminated samples in not only F. tularensis but also other bacteria.

Klíčová slova:

Acetones – Detergents – Ethanol – Francisella tularensis – Government laboratories – Heat treatment – Ultraviolet radiation – Filter sterilization


Zdroje

1. Wurtz N, Papa A, Hukic M, Di Caro A, Leparc-Goffart I, Leroy E, et al. Survey of laboratory-acquired infections around the world in biosafety level 3 and 4 laboratories. Eur J Clin Microbiol Infect Dis. 2016;35(8):1247–58. Epub 2016/05/29. doi: 10.1007/s10096-016-2657-1 27234593.

2. Rusnak JM, Kortepeter MG, Hawley RJ, Anderson AO, Boudreau E, Eitzen E. Risk of occupationally acquired illnesses from biological threat agents in unvaccinated laboratory workers. Biosecur Bioterror. 2004;2(4):281–93. Epub 2005/01/15. doi: 10.1089/bsp.2004.2.281 15650438.

3. Pike RM, Sulkin SE, Schulze ML. Continuing Importance of Laboratory-Acquired Infections. Am J Public Health Nations Health. 1965;55:190–9. Epub 1965/02/01. doi: 10.2105/ajph.55.2.190 14269202; PubMed Central PMCID: PMC1256177.

4. Sulkin SE, Pike RM. Survey of laboratory-acquired infections. Am J Public Health Nations Health. 1951;41(7):769–81. Epub 1951/07/01. doi: 10.2105/ajph.41.7.769 14846999; PubMed Central PMCID: PMC1525598.

5. Harding AL BK. Epidemiology of laboratory-associated infections. In: Fleming DO HD, editor. Biological safety: principles and practices 3rd ASM Press; 2000. p. 35–54.

6. Siengsanan-Lamont J, Blacksell SD. A Review of Laboratory-Acquired Infections in the Asia-Pacific: Understanding Risk and the Need for Improved Biosafety for Veterinary and Zoonotic Diseases. Trop Med Infect Dis. 2018;3(2). Epub 2018/10/03. doi: 10.3390/tropicalmed3020036 30274433; PubMed Central PMCID: PMC6073996.

7. Kimman TG, Smit E, Klein MR. Evidence-based biosafety: a review of the principles and effectiveness of microbiological containment measures. Clin Microbiol Rev. 2008;21(3):403–25. Epub 2008/07/16. doi: 10.1128/CMR.00014-08 18625678; PubMed Central PMCID: PMC2493080.

8. Pike RM. Laboratory-associated infections: summary and analysis of 3921 cases. Health Lab Sci. 1976;13(2):105–14. Epub 1976/04/01. 946794.

9. Enserink M, Du L. SARS. China dumps CDC head, probes lab. Science. 2004;305(5681):163. doi: 10.1126/science.305.5681.163a 15247446.

10. Centers for Disease C, Prevention CRAGAUSA. CDC Report on the Potential Exposure to Anthrax. Int Microbiol. 2014;17(2):119–27. Epub 2014/06/01. doi: 10.2436/20.1501.01.214 26418856.

11. Barry MA. Report of pneumonic tularemia in three Boston Univer-sity researchers, November 2004–March 2005. Boston Public Health Commission. 2005.

12. World Health Organization. Laboratory biosafety manual (Third edition) 2004. Available from: http://www.who.int/csr/resources/publications/biosafety/Biosafety7.pdf.

13. The National Institutes of Health (NIH) Office of Biotechnology Activities (OBA). The NIH Guidelines for Research Involving Recombinant or Synthetic Nucleic Acid Molecules (NIH Guidelines) 2019. Available from: https://osp.od.nih.gov/wp-content/uploads/NIH_Guidelines.pdf.

14. US Department for Health and Human Service. Biosafety in Microbiological and Biomedical Laboratories 5th Edition. Available from: https://www.aaalac.org/accreditation/RefResources/BMBL.pdf.

15. European Union. Directive 2000/54/EC of the European Parliament and of the Council of 18 September 2000 on the protection of workers from risks related to exposure to biological agents at work (Seventh Individual Directive within The Meaning of Article 16 (1) of Directive 89/391/EEC). Official Journal L. 2000;262, 17/10/2000:21–45.

16. Makino T. Japanese Regulatory Space on Biosecurity and Dual Use Research of Concern. Journal of Disaster Research. 2013;8(4):686–92. doi: 10.20965/jdr.2013.p0686

17. Oyston PC, Sjostedt A, Titball RW. Tularaemia: bioterrorism defence renews interest in Francisella tularensis. Nat Rev Microbiol. 2004;2(12):967–78. Epub 2004/11/20. doi: 10.1038/nrmicro1045 15550942.

18. Saslaw S, Eigelsbach HT, Wilson HE, Prior JA, Carhart S. Tularemia vaccine study. I. Intracutaneous challenge. Arch Intern Med. 1961;107:689–701. Epub 1961/05/01. doi: 10.1001/archinte.1961.03620050055006 13746668.

19. Saslaw S, Eigelsbach HT, Prior JA, Wilson HE, Carhart S. Tularemia vaccine study. II. Respiratory challenge. Arch Intern Med. 1961;107:702–14. doi: 10.1001/archinte.1961.03620050068007 13746667.

20. Drabick JJ, Narayanan RB, Williams JC, Leduc JW, Nacy CA. Passive protection of mice against lethal Francisella tularensis (live tularemia vaccine strain) infection by the sera of human recipients of the live tularemia vaccine. Am J Med Sci. 1994;308(2):83–7. Epub 1994/08/01. doi: 10.1097/00000441-199408000-00003 8042659.

21. Ellis J, Oyston PC, Green M, Titball RW. Tularemia. Clin Microbiol Rev. 2002;15(4):631–46. Epub 2002/10/05. doi: 10.1128/CMR.15.4.631-646.2002 12364373; PubMed Central PMCID: PMC126859.

22. Hollis DG, Weaver RE, Steigerwalt AG, Wenger JD, Moss CW, Brenner DJ. Francisella philomiragia comb. nov. (formerly Yersinia philomiragia) and Francisella tularensis biogroup novicida (formerly Francisella novicida) associated with human disease. J Clin Microbiol. 1989;27(7):1601–8. Epub 1989/07/01. 2671019; PubMed Central PMCID: PMC267622.

23. Ehrlich R, Miller S. Survival of airborne Pasteurella tularensis at different atmospheric temperatures. Appl Microbiol. 1973;25(3):369–72. Epub 1973/03/01. 4633423; PubMed Central PMCID: PMC380813.

24. Anda P, Segura del Pozo J, Diaz Garcia JM, Escudero R, Garcia Pena FJ, Lopez Velasco MC, et al. Waterborne outbreak of tularemia associated with crayfish fishing. Emerg Infect Dis. 2001;7(3 Suppl):575–82. Epub 2001/08/04. doi: 10.3201/eid0707.010740 11485678; PubMed Central PMCID: PMC2631832.

25. Clemens DL, Lee BY, Horwitz MA. Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect Immun. 2004;72(6):3204–17. Epub 2004/05/25. doi: 10.1128/IAI.72.6.3204-3217.2004 15155622; PubMed Central PMCID: PMC415696.

26. Chua J, Bozue JA, Klimko CP, Shoe JL, Ruiz SI, Jensen CL, et al. Formaldehyde and Glutaraldehyde Inactivation of Bacterial Tier 1 Select Agents in Tissues. Emerg Infect Dis. 2019;25(5):919–26. Epub 2019/01/27. doi: 10.3201/eid2505.180928 30681072; PubMed Central PMCID: PMC6478217.

27. Dennis DT, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, Eitzen E, et al. Tularemia as a biological weapon: medical and public health management. JAMA. 2001;285(21):2763–73. Epub 2001/06/21. doi: 10.1001/jama.285.21.2763 11386933.

28. Baron SD, Singh R, Metzger DW. Inactivated Francisella tularensis live vaccine strain protects against respiratory tularemia by intranasal vaccination in an immunoglobulin A-dependent fashion. Infect Immun. 2007;75(5):2152–62. Epub 2007/02/14. doi: 10.1128/IAI.01606-06 17296747; PubMed Central PMCID: PMC1865787.

29. Rogers JV, Choi YW. Inactivation of Francisella tularensis Schu S4 in a Biological Safety Cabinet Using Hydrogen Peroxide Fumigation. Appl Biosaf. 2008;13(1):15–20. Epub March 1, 2008. doi: 10.1177/153567600801300103

30. Calfee MW, Wendling M. Inactivation of vegetative bacterial threat agents on environmental surfaces. Sci Total Environ. 2013;443:387–96. Epub 2012/12/05. doi: 10.1016/j.scitotenv.2012.11.002 23208274.

31. Emery FD, Stabenow JM, Miller MA. Efficient inactivation of Burkholderia pseudomallei or Francisella tularensis in infected cells for safe removal from biosafety level 3 containment laboratories. Pathog Dis. 2014;71(2):276–81. Epub 2014/01/23. doi: 10.1111/2049-632X.12138 24449562; PubMed Central PMCID: PMC4105329.

32. Uda A, Sekizuka T, Tanabayashi K, Fujita O, Kuroda M, Hotta A, et al. Role of pathogenicity determinant protein C (PdpC) in determining the virulence of the Francisella tularensis subspecies tularensis SCHU. PLoS One. 2014;9(2):e89075. Epub 2014/02/22. doi: 10.1371/journal.pone.0089075 24558472; PubMed Central PMCID: PMC3928404.

33. Moseley BE. Radiation damage and its repair in non-sporulating bacteria. Soc Appl Bacteriol Symp Ser. 1984;(12):147–74. Epub 1984/01/01. 6494944.

34. Russell AD, Hugo WB, Fraise A, Ayliffe GAJ, Lambert PA, DE MAILLARD J. Russell, Hugo & Ayliffe's Principles and Practice of Disinfection, Preservation & Sterilization: Wiley; 2004.

35. KILIÇ S. A General Overview of Francisella tularensisand theEpidemiology of Tularemia in Turkey. FLORA. 2010;15(2):37–58.

36. Rice EW. Occurrence and Control of Tularemia in Drinking Water. Journal—American Water Works Association. 2015;107(10):E486–E96. doi: 10.5942/jawwa.2015.107.0130

37. Williamson DR, Dewan KK, Patel T, Wastella CM, Ning G, Kirimanjeswara GS. A Single Mechanosensitive Channel Protects Francisella tularensis subsp. holarctica from Hypoosmotic Shock and Promotes Survival in the Aquatic Environment. Appl Environ Microbiol. 2018;84(5). Epub 2017/12/23. doi: 10.1128/AEM.02203-17 29269496; PubMed Central PMCID: PMC5812925.

38. Olsen AB, Mikalsen J, Rode M, Alfjorden A, Hoel E, Straum-Lie K, et al. A novel systemic granulomatous inflammatory disease in farmed Atlantic cod, Gadus morhua L., associated with a bacterium belonging to the genus Francisella. J Fish Dis. 2006;29(5):307–11. Epub 2006/05/09. doi: 10.1111/j.1365-2761.2006.00714.x 16677321.

39. Duodu S, Colquhoun D. Monitoring the survival of fish-pathogenic Francisella in water microcosms. FEMS Microbiol Ecol. 2010;74(3):534–41. Epub 2010/10/28. doi: 10.1111/j.1574-6941.2010.00973.x 20977492.

40. Renner P, Peters J. Resistance of enterococci to heat and chemical agents. Zentralbl Hyg Umweltmed. 1999;202(1):41–50. Epub 1999/07/27. 10418099.

41. Bradley CR, Fraise AP. Heat and chemical resistance of enterococci. J Hosp Infect. 1996;34(3):191–6. Epub 1996/11/01. doi: 10.1016/s0195-6701(96)90065-1 8923273.

42. Day JB, Trujillo S, Hao YY, Whiting RC. Thermal resistance of Francisella tularensis in infant formula and fruit juices. J Food Prot. 2008;71(11):2208–12. Epub 2008/12/03. doi: 10.4315/0362-028x-71.11.2208 19044262.

43. Evans ME. Francisella tularensis. Infect Control. 1985;6(9):381–3. Epub 1985/09/01. 3850862.

44. Rutala WA, Weber DJ. Disinfection and sterilization: an overview. Am J Infect Control. 2013;41(5 Suppl):S2–5. Epub 2013/05/03. doi: 10.1016/j.ajic.2012.11.005 23622742.

45. Price PB. Reevaluation of ethyl alcohol as a germicide. Arch Surg. 1950;60(3):492–502. Epub 1950/03/01. 15403714.

46. Morris EJ. The practical use of ultraviolet radiation for disinfection purposes. Med Lab Technol. 1972;29(1):41–7. Epub 1972/01/01. 5038923.

47. Bridges BA, Mottershead RP. Mutagenic DNA repair in Escherichia coli. III. Requirement for a function of DNA polymerase III in ultraviolet-light mutagenesis. Mol Gen Genet. 1976;144(1):53–8. Epub 1976/02/27. doi: 10.1007/bf00277304 772414.

48. Rose LJ, O'Connell H. UV light inactivation of bacterial biothreat agents. Appl Environ Microbiol. 2009;75(9):2987–90. Epub 2009/03/10. doi: 10.1128/AEM.02180-08 19270145; PubMed Central PMCID: PMC2681683.

49. Omotade TO, Bernhards RC, Klimko CP, Matthews ME, Hill AJ, Hunter MS, et al. The impact of inducing germination of Bacillus anthracis and Bacillus thuringiensis spores on potential secondary decontamination strategies. J Appl Microbiol. 2014;117(6):1614–33. Epub 2014/09/10. doi: 10.1111/jam.12644 25196092.

50. Nicholson WL, Galeano B. UV resistance of Bacillus anthracis spores revisited: validation of Bacillus subtilis spores as UV surrogates for spores of B. anthracis Sterne. Appl Environ Microbiol. 2003;69(2):1327–30. Epub 2003/02/07. doi: 10.1128/AEM.69.2.1327-1330.2003 12571068; PubMed Central PMCID: PMC143644.

51. Caron E, Chevrefils G Jr., Barbeau B, Payment P, Prevost M. Impact of microparticles on UV disinfection of indigenous aerobic spores. Water Res. 2007;41(19):4546–56. Epub 2007/07/10. doi: 10.1016/j.watres.2007.06.032 17619049.

52. Coohill TP, Sagripanti JL. Overview of the inactivation by 254 nm ultraviolet radiation of bacteria with particular relevance to biodefense. Photochem Photobiol. 2008;84(5):1084–90. Epub 2008/07/17. doi: 10.1111/j.1751-1097.2008.00387.x 18627518.

53. Hesselbrock W, Foshay L. The Morphology of Bacterium tularense. J Bacteriol. 1945;49(3):209–31. Epub 1945/03/01. 16560913; PubMed Central PMCID: PMC374032.

54. Eigelsbach HT, Braun W, Herring RD. Studies on the variation of Bacterium tularense. J Bacteriol. 1951;61(5):557–69. Epub 1951/05/01. 14832199; PubMed Central PMCID: PMC386045.

55. Sato T, Fujita H, Ohara Y, Homma M. Correlation between the virulence of Francisella tularensis in experimental mice and its acriflavine reaction. Curr Microbiol. 1992;25(2):95–7. Epub 1992/08/01. doi: 10.1007/bf01570966 1369194.


Článek vyšel v časopise

PLOS One


2019 Číslo 11