Additional evidence that the rat renal interstitium contracts in vivo


Autoři: Manuel Rodríguez-Martínez aff001;  Juan Francisco López-Rodríguez aff001;  Omar Flores-Sandoval aff001;  Miriam Zarahí Calvo-Turrubiartes aff001;  María Eugenia Sánchez-Briones aff001;  Ana Sonia Silva-Ramírez aff001;  Vianney Guerreo-Ojeda aff001
Působiště autorů: Integrative Physiology Laboratory, Department of Physiology & Biophysics, Faculty of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí, México aff001
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225640

Souhrn

We recently provided highly suggestive preliminary evidence that the renal interstitium contracts reactively in vivo. We demonstrated that renal medullary direct interstitial volume expansion (rmDIVE = 100 μl bolus infusion of 0.9% saline (SS)/30 s) brought about a biphasic renal interstitial hydrostatic pressure (RIHP) response which was abolished when dibutyryl-cAMP was concomitant and interstitially infused. To assess more deeply the feasibility of the concept that the renal interstitium contracts in vivo, two experimental series (S1, S2) were performed in hydropenic rats subjected to acute left renal-denervation, hormonal clamping, and control of renal arterial pressure. In S1, RIHP and renal outer medullary blood flow (RoMBF) were continuously measured before and after a sudden micro-bolus (5μl) injection, into the renal medullary interstitium, of SS containing α-trinositol (α-TNS, anti-inflammatory drug) to either two doses 2 or 4 mM (SS + 2 α-TNS and SS + 4 α-TNS groups). No overall differences between groups in either ΔRIHP or %ΔRoMBF time courses were found; however, in the SS + 2 α-TNS group the data were less scattered and the ΔRIHP time course tended to peak faster and then persisted there, so that, this α-TNS dose was selected for S2. In S2, RIHP and RoMBF were similarly measured in rats randomly assigned to three groups: the CTR group (sham time-control), SS group (SS alone), and SS + α-TNS group. The micro-bolus injection of SS alone (SS group) was unable to increase ΔRIHP. The group with no micro-bolus injection (CTR group) experienced a decrease in ΔRIHP. The micro-bolus injection of SS + 2 α-TNS was accompanied by a differential increase in ΔRIHP (vs. CTR and SS groups). These responses were not associated with differential changes among groups in %ΔRoMBF or hemodilution parameters. These results provide additional evidence that the renal interstitium contracts in vivo.

Klíčová slova:

Blood flow – Catheters – Fibroblasts – Hydrostatic pressure – Kidneys – Rats – Renal physiology – Renal arteries


Zdroje

1. Kaissling B, Hegyi I, Loffing J, Le Hir M. Morphology of interstitial cells in the healthy kidney. Anat Embryol. 1996; 193: 303–318. doi: 10.1007/bf00186688 8694267

2. Berg A, Rubin K, Reed RK. Cytochalasin D induces edema formation and lowering of interstitial fluid pressure in rat dermis. Am J Physiol. 2001; 281: H7–H13.

3. Hughes AK, Barry WH, Kohan DE. Identification of a contractile function for renal medullary interstitial cells. J Clin Invest. 1995; 96: 411–416. doi: 10.1172/JCI118050 7615812

4. Flores-Sandoval O, Sánchez-Briones ME, López-Rodríguez JF, Calvo-Turrubiartes MZ, Llamazares-Azuara L, Rodríguez-Martínez M. Highly suggestive preliminary evidence that the renal interstitium contracts in vivo. Physiol Rep. 2017 Jun; 5 (12). pii: e13328. doi: 10.14814/phy2.13328 28646097

5. Lund T, Reed RK: Alpha-Trinositol inhibits edema generation and albumin extravasation in thermally injured skin. J Trauma. 1994; 36:761–765. doi: 10.1097/00005373-199406000-00001 8014994

6. Rodt SA, Reed RK, Ljungström M, Gustafsson TO, Rubin K. The anti- inflammatory agent alpha-trinositol exerts its edema-preventing effects through modulation of beta 1 integrin function. Circ Res. 1994;75: 942–948. doi: 10.1161/01.res.75.5.942 7522989

7. Woie K, Reed RK. Neurogenic inflammation and lowering of interstitial fluid pressure in rat trachea is inhibited by alpha-trinositol. Am J Respir Crit Care Med. 1994; 150: 924–928. doi: 10.1164/ajrccm.150.4.7921464 7921464

8. Nakamura T, Alberola AM, Granger JP. Role of renal interstitial pressure as a mediator of sodium retention during systemic blockade of nitric oxide. Hypertension. 1993; 21:956–960. doi: 10.1161/01.hyp.21.6.956 8505106

9. Garcia-Estañ J, Roman RJ. Role of renal interstitial hydrostatic pressure in the pressure diuresis response. Am J Physiol. 1989; 256: F63–F70. doi: 10.1152/ajprenal.1989.256.1.F63 2912167

10. Nilsson GE: Signal processor for laser Doppler tissue flowmeters. Med Bio Eng Com. 1984; 2: 343–348.

11. Cook NR, Ware JH.Design and analysis methods for longitudinal research. Ann Rev Public Health. 1983; 4: 1–12.

12. Yoo H, Fallgren B, Lindahl A, Wahlestedt C. Characterization of specific binding sites for alpha-trinositol (D-myo-inositol 1, 2,6-trisphosphate) in rat tissues. Eur J Pharmacol. 1994; 15: 268:55–63.

13. Larson M, Sjöquist M, Wolgast M. Renal interstitial volume of the rat kidney. Acta Physiol Scand. 1984; 120: 297–304. doi: 10.1111/j.1748-1716.1984.tb00137.x 6369886

14. Lemley KV, Kriz W. Anatomy of the renal interstitium. Kidney Int. 1991; 39: 370–81. doi: 10.1038/ki.1991.49 2062030

15. Mattson DL: Importance of the renal medullary circulation in the control of sodium excretion and blood pressure. Am J Physiol. 2003; 284: R13–R27.

16. Hulme EC, Trevethick MA. Ligand binding assays at equilibrium: validation and interpretation. Br J Pharmacol. 2010; 161:1219–1237. doi: 10.1111/j.1476-5381.2009.00604.x 20132208

17. Lennernäs H, Lundqvist T, Authi KS, Lindahl A, Okkola S, Gustafsson TO. The pharmacokinetics and metabolism of a trinositol (D-myo-inositol 1,2,6 triphos- phate). Eur J Pharmacol Sci.1997; 5: 267–275.

18. Weinfurt KP: Repeated measures analyses: ANOVA, MANOVA and HLM. In Grimm LG, Yarnold PR editors. Reading and Understanding More Multivariate Statistics. Washington, DC: Am Psychol Assoc; 2000. pp. 245–276.

19. Box GEP, Cox DR An analysis of transformations. J Roy Stat Soc. 1964; 26: 211–252.

20. Akaike HA. New look at the statistical model identification. IEEE Trans Automat Contr AC. 1974; 19:716–772.

21. Heiberger RM, Holland B. Multiple regression–More than one predictor. In Casella J, Fienberg S, Olkin I, editors. Statistical Analysis and Data Display: An Intermediate Course with Samples in S-plus, R and SAS, New York: Springer Science + Business Media Inc; 2015. pp. 263–314.

22. Ahlén K, Berg A, Stiger F, Tengholm A, Siegbahn A, Gylfe E et al. Cell interactions with collagen matrices in vivo and in vitro depend on phosphatidyl- inositol 3-kinase and free cytoplasmic calcium. Cell Adhes Commun. 1998; 5:461–473. doi: 10.3109/15419069809005604 9791727

23. Simchon S, Carlin RD, Jan KM, Chien S: A double isotope technique to determine regional albumin permeability: Effects of anesthesia. Proc Soc Exp Biol Med 1990; 195: 114–118. doi: 10.3181/00379727-195-43127 2399251

24. Gardiner SM, Kemp PA, Fallgren B, Bennett T. Effects of chronic infusions of alpha-trinositol on regional and cardiac haemodynamics in conscious rats. Br J Pharmacol, 1994; 113:129–136. doi: 10.1111/j.1476-5381.1994.tb16184.x 7812602

25. Lingnau W, McGuire R, Booke M, Traber LD, Traber DL. Effects of alpha- trinositol on systemic inflammation and renal function in ovine bacterial sepsis. Shock. 1997; 8:179–185. doi: 10.1097/00024382-199709000-00005 9377164

26. Khraibi AA, Granger JP, Haas JA, Burnett JC, Knox FG. Intrarenal pressures during direct inhibition of sodium transport. Am J Physiol. 1992; 263: R1182–R1186. doi: 10.1152/ajpregu.1992.263.6.R1182 1481925

27. Stridh S, Palm F, Hansell P. Renal interstitial hyaluronan: functional aspects during normal and pathological conditions. Am J Physiol. 2012; 302: R1235–1249.

28. Wilcox CS, Sterzel RB, Dunckel PT, Mohrmann M, Perfetto M. Renal interstitial pressure and sodium excretion during hilar lymphatic ligation. Am J Physiol. 1984; 247:F344–351. doi: 10.1152/ajprenal.1984.247.2.F344 6465326

29. Schmidt-Nielsen B. The renal pelvis. Kidney Int. 1987; 31:621–628. doi: 10.1038/ki.1987.43 3550232

30. Kapanci Y, Assimacopoulos A, Irle C, Zwahlen A, Gabbiani G. “Contractile interstitial cells” in pulmonary alveolar septa: a possible regulator of ventilation- perfusion ratio? Ultrastructural, immunofluorescence, and in vitro studies. J Cell Biol. 1974; 60:375–392. doi: 10.1083/jcb.60.2.375 4204972

31. Williams JM, Sarkis A, Lopez B, Ryan RP, Flasch AK, Roman RJ. Elevations in renal interstitial hydrostatic pressure and 20-hydroxyeicosatetraenoic acid contribute to pressure natriuresis. Hypertension. 2007; 49: 687–694. doi: 10.1161/01.HYP.0000255753.89363.47 17210834

32. Smith LR, Cho S, Discher DE. Stem cell differentiation is regulated by extracellular matrix mechanics. Physiology. 2018; 33:16–25. doi: 10.1152/physiol.00026.2017 29212889

33. Pruitt ME, Knepper MA, Graves B, Schmidt-Nielsen B. Effect of Peristaltic contractions of the renal pelvic wall on solute concentrations of the renal inner medulla in the hamster. Am J Physiol.2006; 290:F892–F896


Článek vyšel v časopise

PLOS One


2019 Číslo 11