Transgenerational deep sequencing revealed hypermethylation of hippocampal mGluR1 gene with altered mRNA expression of mGluR5 and mGluR3 associated with behavioral changes in Sprague Dawley rats with history of prolonged febrile seizure


Autoři: Oluwole Ojo Alese aff001;  Musa V. Mabandla aff001
Působiště autorů: Department of Human Physiology, College of Health Sciences, University of Kwazulu-Natal, Durban, South Africa aff001
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225034

Souhrn

The impact of febrile seizure has been shown to transcend immediate generation with the alteration of glutamatergic pathway being implicated. However, transgenerational effects of this neurological disorder particularly prolonged febrile seizure (PFS) on neurobehavioral study and methylation profile is unknown. We therefore hypothesized that transgenerational impact of prolonged febrile seizure is dependent on methylation of hippocampal mGluR1 gene. Prolonged febrile seizure was induced on post-natal day (PND) 14, by injecting lipopolysaccharide (LPS; 217μg/kg ip) and kainic acid (KA; 1.83 mg/kg ip). Sucrose preference test (SPT) and Forced swim test (FST) were carried out in the first generation (F0) of animals at PND37 and PND60. The F0 rats were decapitated at PND 14, 37 and 60 which corresponded to childhood, adolescent and adulthood respectively and their hippocampal tissue collected. The second generation (F1) rats were obtained by mating F0 generation at PND 60 across different groups, F1 rats were subjected to SPT and FST test on PND 37 only. Decapitation of F1rats and collection of hippocampal tissues were done on PND 14 and 37. Assessment of mGluR5 and mGluR3 mRNA was done with PCR while mGluR1 methylation profile was assessed with the Quantitative MassARRAY analysis. Results showed that PFS significantly leads to decreased sucrose consumption in the SPT and increased immobility time in the FST in both generations of rats. It also leads to significant decrease in mGluR5 mRNA expression with a resultant increased expression of mGluR3 mRNA expression and hypermethylation of mGluR1 gene across both generations of rats. This study suggested that PFS led to behavioral changes which could be transmitted on to the next generation in rats.

Klíčová slova:

DNA methylation – Epigenetics – Glutamate – Hippocampus – Methylation – Rats – Sucrose – Swimming


Zdroje

1. Dube C., Chen K., Eghbal‐Ahmadi M., Brunson K., Soltesz I. and Baram T.Z., 2000. Prolonged febrile seizures in the immature rat model enhance hippocampal excitability long term. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 47(3), pp.336–344.

2. Ackermann S. and Van Toorn R., 2011. Managing first-time seizures and epilepsy in children: A first seizure is a relatively common problem in paediatric general practice. Continuing Medical Education, 29(4).

3. Dubé C., Vezzani A., Behrens M., Bartfai T. and Baram T.Z., 2005. Interleukin‐1β contributes to the generation of experimental febrile seizures. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 57(1), pp.152–155.

4. Cassim S., Qulu L. and Mabandla M.V., 2015. Prenatal stress and early life febrile convulsions compromise hippocampal genes MeCP2/REST function in mid-adolescent life of Sprague-Dawley rats. Neurobiology of learning and memory, 125, pp.195–201. doi: 10.1016/j.nlm.2015.09.002 26358644

5. Qulu L., Daniels W.M. and Mabandla M.V., 2012. Exposure to prenatal stress enhances the development of seizures in young rats. Metabolic brain disease, 27(3), pp.399–404. doi: 10.1007/s11011-012-9300-3 22527993

6. Marchi N., Granata T. and Janigro D., 2014.Inflammatory pathways of seizure disorders.Trends in neurosciences, 37(2), pp.55–65. doi: 10.1016/j.tins.2013.11.002 24355813

7. Barker-Haliski M. and White H.S., 2015.Glutamatergic mechanisms associated with seizures and epilepsy. Cold Spring Harbor perspectives in medicine, 5(8), p.a022863. doi: 10.1101/cshperspect.a022863 26101204

8. Lasoń W., Chlebicka M. and Rejdak K., 2013. Research advances in basic mechanisms of seizures and antiepileptic drug action. Pharmacological Reports, 65(4), pp.787–801. 24145073

9. Danbolt N. C. 2001. Glutamate uptake. Progress in Neurobiology, 65:1, 1–105 doi: 10.1016/s0301-0082(00)00067-8 11369436

10. Sanacora G., Zarate C.A., Krystal J.H. and Manji H.K., 2008.Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders.Nature reviews Drug discovery, 7(5), p.426. doi: 10.1038/nrd2462 18425072

11. Aronica E., Van Vliet E.A., Mayboroda O.A., Troost D., Da Silva F.H.L. and Gorter J.A., 2000. Upregulation of metabotropic glutamate receptor subtype mGluR3 and mGluR5 in reactive astrocytes in a rat model of mesial temporal lobe epilepsy. European Journal of Neuroscience, 12(7), pp.2333–2344. doi: 10.1046/j.1460-9568.2000.00131.x 10947812

12. Notenboom RG, Hampson DR, Jansen GH, van Rijen PC, van Veelen CW, van Nieuwenhuizen O, de Graan PN. 2006. Up-regulation of hippocampal metabotropic glu- tamate receptor 5 in temporal lobe epilepsy patients. Brain 129: 96–107. doi: 10.1093/brain/awh673 16311265

13. Pollock P.M., Cohen-Solal K., Sood R., Namkoong J., Martino J.J., Koganti A., Zhu H., Robbins C., Makalowska I., Shin S.S. and Marin Y., 2003. Melanoma mouse model implicates metabotropic glutamate signaling in melanocytic neoplasia. Nature genetics, 34(1), p.108. doi: 10.1038/ng1148 12704387

14. Bagot R.C., Tse Y.C., Nguyen H.B., Wong A.S., Meaney M.J. and Wong T.P., 2012. Maternal care influences hippocampal N-methyl-D-aspartate receptor function and dynamic regulation by corticosterone in adulthood. Biological psychiatry, 72(6), pp.491–498. doi: 10.1016/j.biopsych.2012.03.016 22521150

15. Lin T., Dang S., Su Q., Zhang H., Zhang J., Zhang L., Zhang X., Lu Y., Li H. and Zhu Z., 2018. The Impact and Mechanism of Methylated Metabotropic Glutamate Receptors 1 and 5 in the Hippocampus on Depression-Like Behavior in Prenatal Stress Offspring Rats. Journal of clinical medicine, 7(6), p.117.

16. Qureshi I.A. and Mehler M.F., 2010. Epigenetic mechanisms underlying human epileptic disorders and the process of epileptogenesis.Neurobiology of disease, 39(1), pp.53–60. doi: 10.1016/j.nbd.2010.02.005 20188170

17. Lubin F.D., 2012. Epileptogenesis: can the science of epigenetics give us answers?.Epilepsy currents, 12(3), pp.105–110. doi: 10.5698/1535-7511-12.3.105 22690136

18. Sterba S.K., Prinstein M.J. and Cox M.J., 2007. Trajectories of internalizing problems across childhood: Heterogeneity, external validity, and gender differences. Development and psychopathology, 19(2), pp.345–366. doi: 10.1017/S0954579407070174 17459174

19. Arai J.A., Li S., Hartley D.M. and Feig L.A., 2009. Transgenerational rescue of a genetic defect in long-term potentiation and memory formation by juvenile enrichment.Journal of Neuroscience, 29(5), pp.1496–1502. doi: 10.1523/JNEUROSCI.5057-08.2009 19193896

20. Kim H.K., Capaldi D.M., Pears K.C., Kerr D.C. and Owen L.D., 2009. Intergenerational transmission of internalising and externalisingbehaviours across three generations: Gender‐specific pathways. Criminal Behaviour and Mental Health, 19(2), pp.125–141. doi: 10.1002/cbm.708 19274624

21. Wu R., Zhang H., Xue W., Zou Z., Lu C., Xia B., Wang W. and Chen G., 2017.Transgenerational impairment of hippocampal Akt-mTOR signaling and behavioral deficits in the offspring of mice that experience postpartum depression-like illness.Progress in Neuro-Psychopharmacology and Biological Psychiatry, 73, pp.11–18. doi: 10.1016/j.pnpbp.2016.09.008 27693392

22. Dai Y.J., Wu D.C., Feng B., Chen B., Tang Y.S., Jin M.M., Zhao H.W., Dai H.B., Wang Y. and Chen Z., 2019. Prolonged febrile seizures induce inheritable memory deficits in rats through DNA methylation. CNS neuroscience & therapeutics.

23. Bohacek J., Gapp K., Saab B.J. and Mansuy I.M., 2013. Transgenerational epigenetic effects on brain functions.Biological psychiatry, 73(4), pp.313–320. doi: 10.1016/j.biopsych.2012.08.019 23062885

24. Fagiolini M., Jensen C.L. and Champagne F.A., 2009. Epigenetic influences on brain development and plasticity. Current opinion in neurobiology, 19(2), pp.207–212. doi: 10.1016/j.conb.2009.05.009 19545993

25. Kobow K. and Blümcke I., 2011. The methylation hypothesis: do epigenetic chromatin modifications play a role in epileptogenesis?.Epilepsia, 52, pp.15–19. doi: 10.1111/j.1528-1167.2011.03145.x 21732935

26. Eng J., 2003. Sample size estimation: how many individuals should be studied?.Radiology, 227(2), pp.309–313. doi: 10.1148/radiol.2272012051 12732691

27. Rakgantsho C. and Mabandla M.V., 2019. Acetylcholine receptor agonist effect on seizure activity and GABAergic mechanisms involved in prolonged febrile seizure development in an animal model. Brain research bulletin.

28. Heida J.G., Moshé S.L. and Pittman Q.J., 2009. The role of interleukin-1β in febrile seizures. Brain and Development, 31(5), pp.388–393. doi: 10.1016/j.braindev.2008.11.013 19217733

29. Thompson C.I., Brannon A.J. and Heck A.L., 2003. Emotional fever after habituation to the temperature-recording procedure.Physiology & behavior, 80(1), pp.103–108.

30. Racine R.J., 1972. Modification of seizure activity by electrical stimulation: II. Motor seizure.Electroencephalography and clinical neurophysiology, 32(3), pp.281–294. doi: 10.1016/0013-4694(72)90177-0 4110397

31. Slattery D.A., Markou A. and Cryan J.F., 2007. Evaluation of reward processes in an animal model of depression. Psychopharmacology, 190(4), pp.555–568. doi: 10.1007/s00213-006-0630-x 17177055

32. Santiago R. M., Tonin F. S., Barbiero J., Zaminelli T., Boschen S. L., Andreatini R., & Vital M. A. B. F. (2015). The nonsteroidal antiinflammatory drug piroxicam reverses the onset of depressive-like behavior in 6-OHDA animal model of Parkinson’s disease. Neuroscience, 300, 246–253. doi: 10.1016/j.neuroscience.2015.05.030 25999296

33. Yankelevitch-Yahav R., Franko M., Huly A. and Doron R., 2015.The forced swim test as a model of depressive-like behavior.JoVE (Journal of Visualized Experiments), (97), p.e52587.

34. Castagné V., Moser P., Roux S. and Porsolt R.D., 2011. Rodent models of depression: forced swim and tail suspension behavioral despair tests in rats and mice. Current Protocols in Neuroscience, 55(1), pp.8–10.

35. Schmittgen T.D. and Livak K.J., 2008. Analyzing real-time PCR data by the comparative C T method.Nature protocols, 3(6), p.1101. doi: 10.1038/nprot.2008.73 18546601

36. Cukor D. and McGinn L.K., 2006. History of child abuse and severity of adult depression: The mediating role of cognitive schema. Journal of Child Sexual Abuse, 15(3), pp.19–34. doi: 10.1300/J070v15n03_02 16893817

37. Crespo M., León-Navarro D.A. and Martín M., 2018. Early-life hyperthermic seizures upregulate adenosine A2A receptors in the cortex and promote depressive-like behavior in adult rats. Epilepsy & Behavior, 86, pp.173–178.

38. Porsolt R.D., Brossard G., Hautbois C. and Roux S., 2001. Rodent models of depression: forced swimming and tail suspension behavioral despair tests in rats and mice. Current protocols in neuroscience, 14(1), pp.8–10.

39. Lang U.E. and Borgwardt S., 2013. Molecular mechanisms of depression: perspectives on new treatment strategies. Cellular Physiology and Biochemistry, 31(6), pp.761–777. doi: 10.1159/000350094 23735822

40. Wang Y., Ma Y., Hu J., Cheng W., Jiang H., Zhang X., Li M., Ren J. and Li X., 2015. Prenatal chronic mild stress induces depression-like behavior and sex-specific changes in regional glutamate receptor expression patterns in adult rats. Neuroscience, 301, pp.363–374. doi: 10.1016/j.neuroscience.2015.06.008 26071959

41. Murrough J.W., Abdallah C.G. and Mathew S.J., 2017. Targeting glutamate signalling in depression: progress and prospects.Nature Reviews Drug Discovery, 16(7), p.472. doi: 10.1038/nrd.2017.16 28303025

42. Gulyaeva N.V., 2017. Interplay between brain BDNF and glutamatergic systems: a brief state of the evidence and association with the pathogenesis of depression. Biochemistry (Moscow), 82(3), pp.301–307.

43. Iyo A.H., Feyissa A.M., Chandran A., Austin M.C., Regunathan S. and Karolewicz B., 2010. Chronic corticosterone administration down-regulates metabotropic glutamate receptor 5 protein expression in the rat hippocampus. Neuroscience, 169(4), pp.1567–1574. doi: 10.1016/j.neuroscience.2010.06.023 20600666

44. Van den Hove D.L.A., Kenis G., Brass A., Opstelten R., Rutten B.P.F., Bruschettini M., Blanco C.E., Lesch K.P., Steinbusch H.W.M. and Prickaerts J., 2013.Vulnerability versus resilience to prenatal stress in male and female rats; implications from gene expression profiles in the hippocampus and frontal cortex.European Neuropsychopharmacology, 23(10), pp.1226–1246. doi: 10.1016/j.euroneuro.2012.09.011 23199416

45. Stam R., De Lange R.P., Graveland H., Verhave P.S. and Wiegant V.M., 2007.Involvement of group II metabotropic glutamate receptors in stress-induced behavioural sensitization.Psychopharmacology, 191(2), pp.365–375. doi: 10.1007/s00213-006-0659-x 17225168

46. Matouk C.C. and Marsden P.A., 2008. Epigenetic regulation of vascular endothelial gene expression.Circulation research, 102(8), pp.873–887. doi: 10.1161/CIRCRESAHA.107.171025 18436802

47. Yan M.S.C., Matouk C.C. and Marsden P.A., 2010. Epigenetics of the vascular endothelium.Journal of Applied Physiology, 109(3), pp.916–926. doi: 10.1152/japplphysiol.00131.2010 20413423

48. Fan A, Ma K, An X, Ding Y, An P, Song G, Tang L, Zhang S, Zhang P, Tan W, Tang B. Effects of Tet1 Knock-Down on Gene Expression and DNA Methylation in Porcine Induced Pluripotent Stem Cells. Reproduction. 2013 Sep 19:REP-13.

49. Frazier-Wood A.C., Aslibekyan S., Absher D.M., Hopkins P.N., Sha J., Tsai M.Y., Tiwari H.K., Waite L.L., Zhi D. and Arnett D.K., 2014. Methylation at CPT1A locus is associated with lipoprotein subfraction profiles. Journal of lipid research, 55(7), pp.1324–1330. doi: 10.1194/jlr.M048504 24711635

50. Hernandez H.G., Tse M.Y., Pang S.C., Arboleda H. and Forero D.A., 2013. Optimizing methodologies for PCR-based DNA methylation analysis.Biotechniques, 55(4), pp.181–197. doi: 10.2144/000114087 24107250

51. Ollikainen M., Smith K.R., Joo E.J.H., Ng H.K., Andronikos R., Novakovic B., Abdul Aziz N.K., Carlin J.B., Morley R., Saffery R. and Craig J.M., 2010. DNA methylation analysis of multiple tissues from newborn twins reveals both genetic and intrauterine components to variation in the human neonatal epigenome. Human molecular genetics, 19(21), pp.4176–4188. doi: 10.1093/hmg/ddq336 20699328

52. Bagot R.C., Zhang T.Y., Wen X., Nguyen T.T.T., Nguyen H.B., Diorio J., Wong T.P. and Meaney M.J., 2012. Variations in postnatal maternal care and the epigenetic regulation of metabotropic glutamate receptor 1 expression and hippocampal function in the rat. Proceedings of the National Academy of Sciences, 109(Supplement 2), pp.17200–17207.

53. Zhang T.Y., Hellstrom I.C., Bagot R.C., Wen X., Diorio J. and Meaney M.J., 2010.Maternal care and DNA methylation of a glutamic acid decarboxylase 1 promoter in rat hippocampus.Journal of Neuroscience, 30(39), pp.13130–13137. doi: 10.1523/JNEUROSCI.1039-10.2010 20881131


Článek vyšel v časopise

PLOS One


2019 Číslo 11