Heterogeneity of porcine bone marrow-derived dendritic cells induced by GM-CSF


Autoři: Sang Eun Kim aff001;  Jeong Ho Hwang aff001;  Young Kyu Kim aff001;  Hoon Taek Lee aff003
Působiště autorů: Department of Animal Biotechnology, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea aff001;  Animal Model Research Group, Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup, Jeollabuk-do, Republic of Korea aff002;  Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea aff003
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223590

Souhrn

In vitro generation of dendritic cells (DCs) is advantageous for overcoming the low frequency of primary DCs and the difficulty of applying isolation techniques for studying DC immunobiology. The culture of bone marrow cells with granulocyte-macrophage colony-stimulating factor (GM-CSF) has been used extensively to generate bone marrow-derived dendritic cells (BMDCs). Studies have reported the heterogeneity of cells grown in murine GM-CSF culture based on the levels of MHCII expression. Although porcine DCs are generated by this classical method, the exact characteristics of the BMDC population have not yet been defined. In this study, we discriminated GM-CSF-grown BMDCs from gnotobiotic miniature pigs according to several criteria including morphology, phenotype, gene expression pattern and function. We showed that porcine BMDCs were heterogeneous cells that differentially expressed MHCII. MHCIIhigh cells displayed more representative of DC-like morphology and phenotype, including costimulatory molecules, as well as they showed a superior T cell priming capacity as compared to MHCIIlow cell. Our data showed that the difference in MHCIIhigh and MHCIIlow cell populations involved distinct maturation states rather than the presence of different cell types. Overall, characterization of porcine BMDC cultures provides important information about this widely used cellular model.

Klíčová slova:

Bone marrow cells – Flow cytometry – Gene expression – Phagocytosis – Phenotypes – Swine – T cells – Phagocytes


Zdroje

1. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52. Epub 1998/04/01. doi: 10.1038/32588 9521319.

2. Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol. 2013;31:563–604. Epub 2013/03/23. doi: 10.1146/annurev-immunol-020711-074950 23516985; PubMed Central PMCID: PMC3853342.

3. Wan H, Dupasquier M. Dendritic cells in vivo and in vitro. Cell Mol Immunol. 2005;2(1):28–35. Epub 2005/10/11. 16212908.

4. Anguille S, Lion E, Tel J, de Vries IJ, Coudere K, Fromm PD, et al. Interleukin-15-induced CD56(+) myeloid dendritic cells combine potent tumor antigen presentation with direct tumoricidal potential. PLoS One. 2012;7(12):e51851. Epub 2013/01/04. doi: 10.1371/journal.pone.0051851 23284789; PubMed Central PMCID: PMC3532168.

5. Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med. 1992;176(6):1693–702. Epub 1992/12/01. doi: 10.1084/jem.176.6.1693 1460426; PubMed Central PMCID: PMC2119469.

6. Olatunde AC, Abell LP, Landuyt AE, Hiltbold Schwartz E. Development of endocytosis, degradative activity, and antigen processing capacity during GM-CSF driven differentiation of murine bone marrow. PLoS One. 2018;13(5):e0196591. Epub 2018/05/11. doi: 10.1371/journal.pone.0196591 29746488; PubMed Central PMCID: PMC5944997.

7. Rogers PB, Driessnack MG, Hiltbold Schwartz E. Analysis of the developmental stages, kinetics, and phenotypes exhibited by myeloid cells driven by GM-CSF in vitro. PLoS One. 2017;12(7):e0181985. Epub 2017/07/28. doi: 10.1371/journal.pone.0181985 28750033; PubMed Central PMCID: PMC5531556.

8. Helft J, Bottcher J, Chakravarty P, Zelenay S, Huotari J, Schraml BU, et al. GM-CSF Mouse Bone Marrow Cultures Comprise a Heterogeneous Population of CD11c(+)MHCII(+) Macrophages and Dendritic Cells. Immunity. 2015;42(6):1197–211. Epub 2015/06/18. doi: 10.1016/j.immuni.2015.05.018 26084029.

9. Na YR, Jung D, Gu GJ, Seok SH. GM-CSF Grown Bone Marrow Derived Cells Are Composed of Phenotypically Different Dendritic Cells and Macrophages. Mol Cells. 2016;39(10):734–41. Epub 2016/10/30. doi: 10.14348/molcells.2016.0160 27788572; PubMed Central PMCID: PMC5104881.

10. Szulc-Dabrowska L, Struzik J, Ostrowska A, Guzera M, Toka FN, Bossowska-Nowicka M, et al. Functional paralysis of GM-CSF-derived bone marrow cells productively infected with ectromelia virus. PLoS One. 2017;12(6):e0179166. Epub 2017/06/13. doi: 10.1371/journal.pone.0179166 28604814; PubMed Central PMCID: PMC5467855.

11. Oh S, Choi EY. The Differential Role of GM-CSF and Flt3L on Myelopoiesis of Lineage Negative Bone Marrow Cells. J Immunol. 2018;200(1). PubMed PMID: WOS:000459977701077.

12. Lutz MB, Inaba K, Schuler G, Romani N. Still Alive and Kicking: In-Vitro-Generated GM-CSF Dendritic Cells! Immunity. 2016;44(1):1–2. Epub 2016/01/21. doi: 10.1016/j.immuni.2015.12.013 26789912.

13. Marquet F, Vu Manh TP, Maisonnasse P, Elhmouzi-Younes J, Urien C, Bouguyon E, et al. Pig skin includes dendritic cell subsets transcriptomically related to human CD1a and CD14 dendritic cells presenting different migrating behaviors and T cell activation capacities. J Immunol. 2014;193(12):5883–93. Epub 2014/11/12. doi: 10.4049/jimmunol.1303150 25385823.

14. Auray G, Keller I, Python S, Gerber M, Bruggmann R, Ruggli N, et al. Characterization and Transcriptomic Analysis of Porcine Blood Conventional and Plasmacytoid Dendritic Cells Reveals Striking Species-Specific Differences. J Immunol. 2016;197(12):4791–806. Epub 2016/11/12. doi: 10.4049/jimmunol.1600672 27837108.

15. Auray G, Lachance C, Wang Y, Gagnon CA, Segura M, Gottschalk M. Transcriptional Analysis of PRRSV-Infected Porcine Dendritic Cell Response to Streptococcus suis Infection Reveals Up-Regulation of Inflammatory-Related Genes Expression. PLoS One. 2016;11(5):e0156019. Epub 2016/05/24. doi: 10.1371/journal.pone.0156019 27213692; PubMed Central PMCID: PMC4877111.

16. Proll MJ, Neuhoff C, Schellander K, Uddin MJ, Cinar MU, Sahadevan S, et al. Transcriptome profile of lung dendritic cells after in vitro porcine reproductive and respiratory syndrome virus (PRRSV) infection. PLoS One. 2017;12(11):e0187735. Epub 2017/11/16. doi: 10.1371/journal.pone.0187735 29140992; PubMed Central PMCID: PMC5687707.

17. Gunzer F, Hennig-Pauka I, Waldmann KH, Mengel M. Gnotobiotic piglets as an animal model for oral infection with O157 and non-O157 serotypes of STEC. Methods Mol Med. 2003;73:307–27. Epub 2002/10/12. doi: 10.1385/1-59259-316-x:307 12375439.

18. Fairbairn L, Kapetanovic R, Sester DP, Hume DA. The mononuclear phagocyte system of the pig as a model for understanding human innate immunity and disease. J Leukocyte Biol. 2011;89(6):855–71. doi: 10.1189/jlb.1110607 WOS:000291108400007. 21233410

19. Hartmann SB, Mohanty S, Skovgaard K, Brogaard L, Flagstad FB, Emneus J, et al. Investigating the Role of Surface Materials and Three Dimensional Architecture on In Vitro Differentiation of Porcine Monocyte-Derived Dendritic Cells. PLoS One. 2016;11(6):e0158503. Epub 2016/07/01. doi: 10.1371/journal.pone.0158503 27362493; PubMed Central PMCID: PMC4928952.

20. Carrasco CP, Rigden RC, Schaffner R, Gerber H, Neuhaus V, Inumaru S, et al. Porcine dendritic cells generated in vitro: morphological, phenotypic and functional properties. Immunology. 2001;104(2):175–84. Epub 2001/10/31. doi: 10.1046/j.0019-2805.2001.01299.x 11683958; PubMed Central PMCID: PMC1783296.

21. Summerfield A, McCullough KC. The porcine dendritic cell family. Dev Comp Immunol. 2009;33(3):299–309. Epub 2008/06/28. doi: 10.1016/j.dci.2008.05.005 18582937.

22. Hwang JH, Gupta MK, Park CK, Kim YB, Lee HT. Establishment of major histocompatibility complex homozygous gnotobiotic miniature swine colony for xenotransplantation. Anim Sci J. 2015;86(4):468–75. Epub 2014/12/11. doi: 10.1111/asj.12312 25491717.

23. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11. Epub 2009/03/18. doi: 10.1093/bioinformatics/btp120 19289445; PubMed Central PMCID: PMC2672628.

24. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5. Epub 2010/05/04. doi: 10.1038/nbt.1621 20436464; PubMed Central PMCID: PMC3146043.

25. Wilkinson-Ryan I, Kim J, Kim S, Ak F, Dodson L, Colonna M, et al. Incorporation of porcine adenovirus 4 fiber protein enhances infectivity of adenovirus vector on dendritic cells: implications for immune-mediated cancer therapy. PLoS One. 2015;10(5):e0125851. Epub 2015/05/02. doi: 10.1371/journal.pone.0125851 25933160; PubMed Central PMCID: PMC4416912.

26. Auray G, Facci MR, van Kessel J, Buchanan R, Babiuk LA, Gerdts V. Porcine neonatal blood dendritic cells, but not monocytes, are more responsive to TLRs stimulation than their adult counterparts. PLoS One. 2013;8(5):e59629. Epub 2013/05/15. doi: 10.1371/journal.pone.0059629 23667422; PubMed Central PMCID: PMC3648567.

27. Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, Schraml BU, et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol. 2014;14(8):571–8. Epub 2014/07/19. doi: 10.1038/nri3712 25033907; PubMed Central PMCID: PMC4638219.

28. Gao Y, Nish SA, Jiang R, Hou L, Licona-Limon P, Weinstein JS, et al. Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. Immunity. 2013;39(4):722–32. Epub 2013/10/01. doi: 10.1016/j.immuni.2013.08.028 24076050; PubMed Central PMCID: PMC4110745.

29. Persson EK, Uronen-Hansson H, Semmrich M, Rivollier A, Hagerbrand K, Marsal J, et al. IRF4 transcription-factor-dependent CD103(+)CD11b(+) dendritic cells drive mucosal T helper 17 cell differentiation. Immunity. 2013;38(5):958–69. Epub 2013/05/15. doi: 10.1016/j.immuni.2013.03.009 23664832.


Článek vyšel v časopise

PLOS One


2019 Číslo 11