Male-pattern baldness and incident coronary heart disease and risk factors in the Heinz Nixdorf Recall Study

Autoři: Sonali Pechlivanis aff001;  Stefanie Heilmann-Heimbach aff002;  Raimund Erbel aff001;  Amir A. Mahabadi aff004;  Lara M. Hochfeld aff002;  Karl-Heinz Jöckel aff001;  Markus M. Nöthen aff002;  Susanne Moebus aff001
Působiště autorů: Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, Essen, Germany aff001;  Institute of Human Genetics, University of Bonn, Bonn, Germany aff002;  Department of Genomics, Life & Brain GmbH, University of Bonn, Bonn, Germany aff003;  Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Essen, Germany aff004;  Centre for Urbane Epidemiology, University Hospital Essen, Essen, Germany aff005
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225521


Male-pattern baldness (MPB) is characterized by a progressive hair loss from the frontal and vertex scalp that affects about 80% of men at the age of 80 years. Epidemiological studies show positive associations between MPB and coronary heart disease (CHD) and CHD related risk factors such as blood pressure (BP), diabetes mellitus (DM) or elevated blood lipid levels. The results however vary with regard to the pattern of hair loss (i.e. moderate, severe, frontal or vertex). Further, no study has investigated for a shared genetic determinant between MPB and CHD as well as CHD related risk factors. Using the longitudinal data from the population-based Heinz Nixdorf Recall study we aimed to systematically investigate the association between MPB and incident CHD and CHD risk factors on (i) an epidemiological (N = 1,673 males) and (ii) a genetic (N = 1,357 males) level. The prevalence of any baldness in our study population was 88% (mean age ± SD: 64±7.5 years). Compared to men with ‘no baldness’, in men with any kind of baldness a slightly increased risk for CHD (Hazard ratio [95% confidence interval (95%CI)] = 1.2 [0.8; 1.9]), a slightly higher extend of coronary artery calcification (CAC) (Beta [95%CI] = 0.2 [-0.1; 0.6]), a moderately increased risk for DM (prevalence ratio [95%CI] = 1.4 [0.9; 2.0]) and higher body mass index (BMI) (Beta [95%CI] = 0.6 [0.00003; 1.2]) seem to be indicated in the adjusted model. In contrast, the MPB genetic risk score did not show any association with CHD or CHD risk factors. Taken together, the results of our study suggest a weak association between MPB and a few CHD risk factors (CAC, DM and BMI) but do not point to MPB as a strong surrogate measure for CHD and CHD risk factors in general.

Klíčová slova:

Blood pressure – Coronary heart disease – Genetic predisposition – Genetics of disease – Human genetics – Medical risk factors – Genetic epidemiology


1. Hamilton JB. Patterned loss of hair in man; types and incidence. Ann N Y Acad Sci. 1951;53(3):708–28. doi: 10.1111/j.1749-6632.1951.tb31971.x 14819896.

2. Arias-Santiago S, Arrabal-Polo MA, Buendia-Eisman A, Arrabal-Martin M, Gutierrez-Salmeron MT, Giron-Prieto MS, et al. Androgenetic alopecia as an early marker of benign prostatic hyperplasia. J Am Acad Dermatol. 2012;66(3):401–8. Epub 2011/08/13. doi: 10.1016/j.jaad.2010.12.023 21835498.

3. Ford ES, Freedman DS, Byers T. Baldness and ischemic heart disease in a national sample of men. Am J Epidemiol. 1996;143(7):651–7. doi: 10.1093/oxfordjournals.aje.a008797 8651226.

4. Lesko SM, Rosenberg L, Shapiro S. A case-control study of baldness in relation to myocardial infarction in men. JAMA. 1993;269(8):998–1003. 8429606.

5. Lotufo PA, Chae CU, Ajani UA, Hennekens CH, Manson JE. Male pattern baldness and coronary heart disease: the Physicians’ Health Study. Arch Intern Med. 2000;160(2):165–71. doi: 10.1001/archinte.160.2.165 10647754.

6. Matilainen V, Koskela P, Keinanen-Kiukaanniemi S. Early androgenetic alopecia as a marker of insulin resistance. Lancet. 2000;356(9236):1165–6. doi: 10.1016/S0140-6736(00)02763-X 11030300.

7. Matilainen VA, Makinen PK, Keinanen-Kiukaanniemi SM. Early onset of androgenetic alopecia associated with early severe coronary heart disease: a population-based, case-control study. J Cardiovasc Risk. 2001;8(3):147–51. doi: 10.1177/174182670100800305 11455846.

8. Schnohr P, Lange P, Nyboe J, Appleyard M, Jensen G. Gray hair, baldness, and wrinkles in relation to myocardial infarction: the Copenhagen City Heart Study. Am Heart J. 1995;130(5):1003–10. doi: 10.1016/0002-8703(95)90201-5 7484729.

9. Su LH, Chen LS, Lin SC, Chen HH. Association of androgenetic alopecia with mortality from diabetes mellitus and heart disease. JAMA Dermatol. 2013;149(5):601–6. doi: 10.1001/jamadermatol.2013.130 23677087.

10. Yamada T, Hara K, Umematsu H, Kadowaki T. Male pattern baldness and its association with coronary heart disease: a meta-analysis. BMJ Open. 2013;3(4). doi: 10.1136/bmjopen-2012-002537 23554099.

11. Erbel R, Lehmann N, Churzidse S, Rauwolf M, Mahabadi AA, Mohlenkamp S, et al. Progression of coronary artery calcification seems to be inevitable, but predictable—results of the Heinz Nixdorf Recall (HNR) study. Eur Heart J. 2014;35(42):2960–71. doi: 10.1093/eurheartj/ehu288 25062951.

12. Stang A, Moebus S, Dragano N, Beck EM, Mohlenkamp S, Schmermund A, et al. Baseline recruitment and analyses of nonresponse of the Heinz Nixdorf Recall Study: identifiability of phone numbers as the major determinant of response. Eur J Epidemiol. 2005;20(6):489–96. doi: 10.1007/s10654-005-5529-z 16121757.

13. Schmermund A, Mohlenkamp S, Berenbein S, Pump H, Moebus S, Roggenbuck U, et al. Population-based assessment of subclinical coronary atherosclerosis using electron-beam computed tomography. Atherosclerosis. 2006;185(1):177–82. doi: 10.1016/j.atherosclerosis.2005.06.003 16005882.

14. Lehmann N, Erbel R, Mahabadi AA, Rauwolf M, Mohlenkamp S, Moebus S, et al. Value of Progression of Coronary Artery Calcification for Risk Prediction of Coronary and Cardiovascular Events: Result of the HNR Study (Heinz Nixdorf Recall). Circulation. 2018;137(7):665–79. doi: 10.1161/CIRCULATIONAHA.116.027034 29142010.

15. Erbel R, Mohlenkamp S, Moebus S, Schmermund A, Lehmann N, Stang A, et al. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf Recall study. J Am Coll Cardiol. 2010;56(17):1397–406. doi: 10.1016/j.jacc.2010.06.030 20946997.

16. Erbel R, Lehmann N, Mohlenkamp S, Churzidse S, Bauer M, Kalsch H, et al. Subclinical coronary atherosclerosis predicts cardiovascular risk in different stages of hypertension: result of the Heinz Nixdorf Recall Study. Hypertension. 2012;59(1):44–53. doi: 10.1161/HYPERTENSIONAHA.111.180489 22124435.

17. Pechlivanis S, Muhleisen TW, Mohlenkamp S, Schadendorf D, Erbel R, Jockel KH, et al. Risk loci for coronary artery calcification replicated at 9p21 and 6q24 in the Heinz Nixdorf Recall Study. BMC Med Genet. 2013;14:23. doi: 10.1186/1471-2350-14-23 23394302.

18. Lehmann N, Mohlenkamp S, Mahabadi AA, Schmermund A, Roggenbuck U, Seibel R, et al. Effect of smoking and other traditional risk factors on the onset of coronary artery calcification: results of the Heinz Nixdorf recall study. Atherosclerosis. 2014;232(2):339–45. doi: 10.1016/j.atherosclerosis.2013.11.045 24468147.

19. Stang A, Moebus S, Mohlenkamp S, Dragano N, Schmermund A, Beck EM, et al. Algorithms for converting random-zero to automated oscillometric blood pressure values, and vice versa. Am J Epidemiol. 2006;164(1):85–94. doi: 10.1093/aje/kwj160 16675536.

20. Erbel R, Lehmann N, Churzidse S, Mohlenkamp S, Moebus S, Mahabadi AA, et al. Gender-specific association of coronary artery calcium and lipoprotein parameters: the Heinz Nixdorf Recall Study. Atherosclerosis. 2013;229(2):531–40. doi: 10.1016/j.atherosclerosis.2013.04.015 23701995.

21. Moebus S, Stang A, Mohlenkamp S, Dragano N, Schmermund A, Slomiany U, et al. Association of impaired fasting glucose and coronary artery calcification as a marker of subclinical atherosclerosis in a population-based cohort—results of the Heinz Nixdorf Recall Study. Diabetologia. 2009;52(1):81–9. doi: 10.1007/s00125-008-1173-y 18979083.

22. Lin DY, Wei LJ, Ying Z. Checking the Cox model with cumulative sums of martingale-based residuals. Biometrika. 1993;80(3):557–72. doi: 10.1093/biomet/80.3.557

23. Textor J, Hardt J, Knuppel S. DAGitty: a graphical tool for analyzing causal diagrams. Epidemiology. 2011;22(5):745. doi: 10.1097/EDE.0b013e318225c2be 21811114.

24. Spiegelman D, Hertzmark E. Easy SAS calculations for risk or prevalence ratios and differences. Am J Epidemiol. 2005;162(3):199–200. doi: 10.1093/aje/kwi188 15987728.

25. Zou G. A modified poisson regression approach to prospective studies with binary data. Am J Epidemiol. 2004;159(7):702–6. doi: 10.1093/aje/kwh090 15033648.

26. Howie B, Marchini J, Stephens M. Genotype imputation with thousands of genomes. G3 (Bethesda). 2011;1(6):457–70. doi: 10.1534/g3.111.001198 22384356.

27. Geisel MH, Coassin S, Hessler N, Bauer M, Eisele L, Erbel R, et al. Update of the effect estimates for common variants associated with carotid intima media thickness within four independent samples: The Bonn IMT Family Study, the Heinz Nixdorf Recall Study, the SAPHIR Study and the Bruneck Study. Atherosclerosis. 2016;249:83–7. doi: 10.1016/j.atherosclerosis.2016.03.042 27085157.

28. Hagenaars SP, Hill WD, Harris SE, Ritchie SJ, Davies G, Liewald DC, et al. Genetic prediction of male pattern baldness. PLoS Genet. 2017;13(2):e1006594. doi: 10.1371/journal.pgen.1006594 28196072 following competing interests: IJD and DJP are participants in UK Biobank.

29. Heilmann-Heimbach S, Herold C, Hochfeld LM, Hillmer AM, Nyholt DR, Hecker J, et al. Meta-analysis identifies novel risk loci and yields systematic insights into the biology of male-pattern baldness. Nat Commun. 2017;8:14694. doi: 10.1038/ncomms14694 28272467.

30. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75. doi: 10.1086/519795 17701901.

31. Trieu N, Eslick GD. Alopecia and its association with coronary heart disease and cardiovascular risk factors: a meta-analysis. Int J Cardiol. 2014;176(3):687–95. doi: 10.1016/j.ijcard.2014.07.079 25150481.

32. Shahar E, Heiss G, Rosamond WD, Szklo M. Baldness and myocardial infarction in men: the atherosclerosis risk in communities study. Am J Epidemiol. 2008;167(6):676–83. doi: 10.1093/aje/kwm365 18208984.

33. Herrera CR, D’Agostino RB, Gerstman BB, Bosco LA, Belanger AJ. Baldness and coronary heart disease rates in men from the Framingham Study. Am J Epidemiol. 1995;142(8):828–33. doi: 10.1093/oxfordjournals.aje.a117722 7572959.

34. Sari I, Aykent K, Davutoglu V, Yuce M, Ozer O, Kaplan M, et al. Association of male pattern baldness with angiographic coronary artery disease severity and collateral development. Neth Heart J. 2015;23(5):265–74. Epub 2015/04/26. doi: 10.1007/s12471-015-0688-3 25911010.

35. Dogramaci AC, Balci DD, Balci A, Karazincir S, Savas N, Topaloglu C, et al. Is androgenetic alopecia a risk for atherosclerosis? J Eur Acad Dermatol Venereol. 2009;23(6):673–7. doi: 10.1111/j.1468-3083.2009.03137.x 19250324.

36. Hirsso P, Laakso M, Matilainen V, Hiltunen L, Rajala U, Jokelainen J, et al. Association of insulin resistance linked diseases and hair loss in elderly men. Finnish population-based study. Cent Eur J Public Health. 2006;14(2):78–81. 16830609.

37. Hirsso P, Rajala U, Hiltunen L, Jokelainen J, Keinanen-Kiukaanniemi S, Nayha S. Obesity and low-grade inflammation among young Finnish men with early-onset alopecia. Dermatology. 2007;214(2):125–9. doi: 10.1159/000098570 17341860.

38. Sharma L, Dubey A, Gupta PR, Agrawal A. Androgenetic alopecia and risk of coronary artery disease. Indian Dermatol Online J. 2013;4(4):283–7. Epub 2013/12/19. doi: 10.4103/2229-5178.120638 24350006.

Článek vyšel v časopise


2019 Číslo 11