Respiratory health and inflammatory markers - Exposure to respirable dust and quartz and chemical binders in Swedish iron foundries

Autoři: Lena Andersson aff001;  Ing-Liss Bryngelsson aff001;  Alexander Hedbrant aff002;  Alexander Persson aff002;  Anders Johansson aff001;  Annette Ericsson aff001;  Ina Lindell aff001;  Leo Stockfelt aff004;  Eva Särndahl aff002;  Håkan Westberg aff001
Působiště autorů: Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden aff001;  Department of Medical Sciences, School of Medicine and Health, Örebro University, Örebro, Sweden aff002;  Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, Örebro, Sweden aff003;  Unit of Occupational and Environmental Medicine, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden aff004
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224668



To study the relationship between respirable dust, quartz and chemical binders in Swedish iron foundries and respiratory symptoms, lung function (as forced expiratory volume FEV1 and vital capacity FVC), fraction of exhaled nitric oxide (FENO) and levels of club cell secretory protein 16 (CC16) and CRP.


Personal sampling of respirable dust and quartz was performed for 85 subjects in three Swedish iron foundries. Full shift sampling and examination were performed on the second or third day of a working week after a work free weekend, with additional sampling on the fourth or fifth day. Logistic, linear and mixed model analyses were performed including, gender, age, smoking, infections, sampling day, body mass index (BMI) and chemical binders as covariates.


The adjusted average respirable quartz and dust concentrations were 0.038 and 0.66 mg/m3, respectively. Statistically significant increases in levels of CC16 were associated with exposure to chemical binders (p = 0.05; p = 0.01) in the regression analysis of quartz and respirable dust, respectively. Non-significant exposure-responses were identified for cumulative quartz and the symptoms asthma and breathlessness. For cumulative chemical years, non-significant exposure–response were observed for all but two symptoms. FENO also exhibited a non significant exposure-response for both quartz and respirable dust. No exposure-response was determined for FEV1 or FVC, CRP and respirable dust and quartz.


Our findings suggest that early markers of pulmonary effect, such as increased levels of CC16 and FENO, are more strongly associated with chemical binder exposure than respirable quartz and dust in foundry environments.

Klíčová slova:

Coughing – Dust – Formaldehyde – Inflammation – Nose – Public and occupational health – Pulmonary function – Respiratory physiology


1. Rees D, Weiner R. Dust and pneumoconiosis in the South African foundry industry. S Afr Med J 1994; 84(12): 851–855. 7570237

2. Rosenman KD, Reilly MJ, Rice C, V. Hertzberg V, Tseng CY, Anderson HA. Silicosis among foundry workers. Implication for the need to revise the OSHA standard. Am J Epidemiol 1996; 144(9): 890–900. doi: 10.1093/oxfordjournals.aje.a009023 8890667

3. Sherson D, Svane O, Lynge E. Cancer incidence among foundry workers in Denmark. Arch Environ Health 1991;46(2): 75–81. doi: 10.1080/00039896.1991.9937432 2006897

4. Andjelkovich DA., Mathew RM., Richardson RB., Levine RJ. Mortality of iron foundry workers: I. Overall findings. J Occup Med 1990; 32(6): 529–540. doi: 10.1097/00043764-199006000-00010 2166148

5. Xu Z, Brown LM, Pan GW, Liu TF, Gao GS, Stone BJ et al. Cancer risks among iron and steel workers in Anshan, China, Part II: Case-control studies of lung and stomach cancer. 1996; Am J Ind Med 30(1): 7–15. doi: 10.1002/(SICI)1097-0274(199607)30:1<7::AID-AJIM2>3.0.CO;2-# 8837676

6. Koskela RS, Mutanen P, Sorsa JA, Klockars M. Factors predictive of ischemic heart disease mortality in foundry workers exposed to carbon monoxide. Am J Epidemiol 2000;152(7): 628–632. doi: 10.1093/aje/152.7.628 11032157

7. Fan C, Graff P, Vihlborg P., Bryngelsson IL, Andersson L. Silica exposure increases the risk of stroke but not myocardial infarction-a retrospective cohort study. PLoS ONE 2018;13(2)e0192840. doi: 10.1371/journal.pone.0192840 29481578

8. Yoon JH, Ahn YE Cause specific mortality due to malignant and non-malignant disease in Korean foundry workers. 2014; PLoS ONE 9(2): e 8836413(2)

9. Gomes J, Lloyd OL, Norman NJ, Pahwa P. Dust exposure and impairment of lung function at a small iron foundry in a rapidly developing country Occup Environ Med. 2001; 58(10):656–62. doi: 10.1136/oem.58.10.656 11555687

10. Low I, Mitchell C. Respiratory disease in foundry workers Br J Ind Med 1985;42: 101–105. doi: 10.1136/oem.42.2.101 3970867

11. Kärävä R, Hernberg S, Koskela R-S, Luoma K.Prevalence of pneumoconiosis and chronic bronchitis in foundry workers. Scand J Work Environ Health 1976;2(1):64–72 doi: 10.5271/sjweh.2830 968467

12. Mendonca E, Silva R, Bussacos M, Algranti E, Respiratory impairment in Brazilian foundry workers exposed to sand Am J Ind Med 2007; 50(2): 83–91. doi: 10.1002/ajim.20413 17238133

13. Kuo HC, Chang L, Liang W, Chung B. Respiratory abnormalities among male foundry workers in central Taiwan. Occup. Med. 1999; 49 (8), pp. 499–505.

14. Kayhan S,Tutar U, Cinarka H, Gumus A, Koksal N Prevalence of Occupational Asthma and Respiratory Symptoms in Foundry Workers Hindawi Publishing Corporation Pulmonary Medicine. 2013, Article ID 370138, 4 pages

15. Johnson A, Chan–Yeung M, Maclean L, Atkins E, Dubuncio A, Cheng F, Enarson D. Respiratory abnormalities among workers in an iron and steel foundry British Journal of Industrial Medicine 1985;42(2):94–100.

16. Zarei F, Rezazadeh Azari M, Salehpour S, Khodakarim S, Omidi L, Tavakol E. Respiratory Effects of Simultaneous Exposure to Respirable Crystalline Silica Dust, Formaldehyde, and Triethylamine of a Group of Foundry Workers. J Res Health Sci. 2017; 17(1): e00371. 28413169

17. Åhman M, Alexandersson R, Ekholm U, Bergström B, Dahlqvist M, Ulfvarsson U. Impeded lung function in mouolders and core makers handling furan resin sand Int Arch Environ Health. 1991; 63(3):175–80.

18. Malmberg LP, Turpeinen H, Rytilä P, Sarna S, Haahtela T. Determinants of increased exhaled nitric oxide in patients with suspected asthma. Allergy 2005;60:464–468. doi: 10.1111/j.1398-9995.2005.00740.x 15727577

19. Koskela K, Oksa P, Sauni R, Linnainmaa M, Toivio P, Lehtimaki L, Moilanen E, Nieminen R, Luukkonen R, Uitti J. Pulmonary inflammation in foundry workers J Occup Environ Med. 2015 57(2)124–128. doi: 10.1097/JOM.0000000000000390 25654513

20. Ulvestad B, Grethe Randem B Andersson L Ellingsen D, Barregard L. Clara cell protein as a biomarker for lung epithelial injury in asphalt workers. J Occup Environ Med 2007;49(10):1073–1078. doi: 10.1097/JOM.0b013e3181570726 18000412

21. Westberg H, Hedbrant A, Persson A, Bryngelsson I, Johansson A, Ericsson A, Sjögren B, Stockfelt L, Särndahl E, Andersson L. Inflammatory and coagulatory markers and exposure to different size fractions of particle mass, number and surface area concentrations in Swedish foundries, in particular respirable quartz Int Arch Environ Health 2019 s10.1007/s00420-019-01446-z.

22. American Foundry Society and Casting Industry Suppliers Association. (2018) Form R-Reporting of binder chemicals used in foundries. American Foundry Society, Schaumburg Illinois 2018;60173 ISBN 10: 0-87433-403-0 2007;

23. Health and Safety Executive (HSE 2000). MDHDS: General methods for sampling and gravimetric analysis of inhalable and respirable dust. Report no 14/3, February 2000, Suffolk UK (2000).

24. NIOSH (1994a) Manual of analytical methods, 4th edition. Silica, crystalline, by XRD: method 7500. Cincinnati: National Institute of Occupational Safety and Health, US department of health and human services.

25. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J 2005; 26: 319–338. doi: 10.1183/09031936.05.00034805 16055882

26. Hedenström H, Malmberg P, Agarwal K. Reference values for lung function tests in females. Regression equations with smoking variables. Bull Eur Physiopathol Respir. 1985;21:551–557. 4074961

27. Hedenström H, Malmberg P, Fridriksson HV. Reference values for lung function tests in males. Regression equations with smoking variables. Ups J Med Sci 1986;.91(3) 299–310. doi: 10.3109/03009738609178670 3811032

28. ATS Workshop proceedings. Exhaled nitric oxide and nitric ocxide oxidative metabolism in exhaled nreath condensate. Proc Am Thorac Soc 2006(3) 131–145. doi: 10.1513/pats.200406-710ST;

29. Westberg H, Andersson L, Bryngelsson IL, Ngo Y, Ohlson CG. Cancer morbidity and quartz exposure in Swedish iron foundries. Int Arch Occup Environ Health. 2013; 86(5):499–507. doi: 10.1007/s00420-012-0782-4 Epub 2012 May 22. 22729566

30. Westberg H, Seldén A, Bellander T. Exposure to chemical agents in Swedish aluminum foundries and aluminum remelting plants-a ciomprehensive survey Appl Ocup Environ Hyg 2001;16(1):66–77.

31. Andersson L, Bryngelsson ILB, Ngo Y, Ohlson CGO, Westberg H. Exposure assessment and modeling of quartz in Swedish iron foundries for a nested case-control study on lung cancer. J Occup and Environ Hyg, 2012(9): 110–119.

32. Rudnicka et al 2007

33. British Occupational Hygiene Society, Nederlandse Vereiniging voor Arbeidshygiene. Testing compliance with occupational exposure limits for airborne substances September 2011 BOHS 2017. Accessed July 6, 2017.

34. Andersson L, Bryngelsson IL, Ohlson CG, Nayström P, Lilja BG, Westberg H. Quartz and dust exposure in Swedish iron foundries. J Occup Environ Hyg. 2009; 6:9–18. doi: 10.1080/15459620802523943 18982534

35. Li C, Sung EA. Review of the healthy worker effect in occupational epidemiology Occup. Med. 1999;49(4) 225–229

36. McAuley D, Matthay M. Clara cell protein CC 16: A new lung epithel biomarker for acute lung injury Chest 2009;135(6):1408–1410 doi: 10.1378/chest.09-0304 19497890

37. Broeckaert F, Clippe A, Knoops B, Hermans C, Bernard A. Clara Cell Secretory Protein (CC16): Features as a Peripheral Lung Biomarker. Annals of the New York Academy of Sciences. 2000;923:68–77 11193780

38. Lakind JS, Holgate ST, Ownby DR, Mansur AH, Helms PJ, Pyatt D, Hays SM. A critical review of the use of Clara cell secretory protein (CC16) as a biomarker of acute or chronic pulmonary effects. Biomarkers 2007 12(5), 445–467. doi: 10.1080/13547500701359327 17701745

39. Steiner D, Jeggli S, Tschopp A, Bernard A, Oppliger A, Hilfiker S, Hotz P Clara cell protein and surfactant protein B in garbage collectors and in wastewater workers exposed to bioaerosols Int Arch Occup Environ Health. 2005 Apr;78(3):189–97. Epub 2005 Mar 16. doi: 10.1007/s00420-004-0586-2 15772810

40. Straumfors A, Eduard W, K. Heldal K, Skogstad M, Barregård L, Ellingsen D(2018): Pneumoproteins and markers of inflammation and platelet activation in the blood of grain dust exposed workers, Biomarkers, doi: 10.1080/1354750X.2018.1485057 29911898

41. Barregard L, Sallsten G, Andersson L, Almstrand AC, Gustafson P, et al. Experimental exposure to wood smoke: effects on airway inflammation and oxidative stress. J Occup Environ Med. 2008;65(5):319–24.

42. Stockfelt L, Sallsten G, Olin A-C, Almerud P, Samuelsson L, Johannesson S, Molnár P, Strandberg B, Almstrand A-C, Bergemalm-Rynell K, Barregard L. Effects on airways of short-term exposure to two kinds of wood smoke in a chamber study of healthy humans. Inhalation Toxicology 2012; 24(1), 47–59. doi: 10.3109/08958378.2011.633281 22220980

43. Bernard A, Hermans C, van Houte G. Transient increase of Clar cell protein (CC16) after exposure to smoke Opccup Environ Med 1997; 54(1):63–65.

44. Blomberg A, Mudway I, Svensson M, Hagenbjörk-Gustafsson A, Thomasson L, Helleday R, Dumont X, Forsberg B, Nordberg G, Bernard AClara cell protein as a biomarker for ozone-induced lung injury in humans. Eur Respir J. 2003; 22(6):883–8. doi: 10.1183/09031936.03.00048203 14680073

45. Broeckaert F, Bernard A. Clara cell secretory protein (CC16): characteristics and perspectives as lung peripheral biomarker. Clinical and Experimental Allergy 2000; 30(4): 469–475 10718843

46. Bonetto G, Corradi M, Carraro S, Zanconato S, Alinovi R, Folesani G, Da Dalt L, Mutti A, Baraldi E. Longitudinal monitoring of lung injury in children after acute chlorine exposure in a swimming pool. Am J Respir Crit Care Med. 2006;174(5):545–9. Epub 2006 Jun 8. doi: 10.1164/rccm.200509-1392OC 16763216

47. Provost EB, Chaumont A, Kicinski M, Cox B, Fierens F, et al. Serum levels of club cell secretory protein (Clara) and short- and long-term exposure to particulate air pollution in adolescents. Environment International. 2014;68:66–70. doi: 10.1016/j.envint.2014.03.011 24709782

48. Freberg BI, Olsen R, Thorud S, Daae HL, Hersson M, et al. Pulmonary function and serum pneumoproteins in professional ski waxers. Inhal Toxicol. 2016;28(1):7–13. doi: 10.3109/08958378.2015.1123333 26792362

49. Heldal KK, Barregard L, Larsson P, Ellingsen DG. Pneumoproteins in sewage workers exposed to sewage dust.Int Arch Occup Environ Health. 2013; 86(1):65–70. doi: 10.1007/s00420-012-0747-7 Epub 2012 Feb 17. 22350277

50. Wang H, Duan H, Meng T, Yang M, Cui L, et al. Local and systemic inflammation may mediate diesel engine exhaust-induced lung function impairment in Chinese occupational cohort. ToxSci 2018; 162(2) 372–382. doi: 10.1093/toxsci/kfx259 29186624

51. Kirkhus NE, Ulvestad B, Barregard L, Skare Ø, Olsen R, Thomassen Y, Ellingsen DG. Pneumoproteins in Offshore Drill Floor Workers. Int J Environ Res Public Health. 2019 Jan 23;16(3).

52. Ellingsen DG, Ulvestad B, Bakke B, Seljeflot I, Barregard L, Thomassen Y. Serum pneumoproteins in tunnel construction workers. Int Arch Occup Environ Health 2015; 88:943–951. doi: 10.1007/s00420-015-1023-4 25632885

53. Baur X, Bakehe P, Vellguth H Bronchial asthma and COPD due to irritants in the workplace—an evidence-based approach J Occup Med Tox 2012 7(1):19. doi: 10.1186/1745-6673-7-19 23013890

Článek vyšel v časopise


2019 Číslo 11