A LAMP assay for the rapid and robust assessment of Wolbachia infection in Aedes aegypti under field and laboratory conditions


Autoři: Moshe E. Jasper aff001;  Qiong Yang aff001;  Perran A. Ross aff001;  Nancy Endersby-Harshman aff001;  Nicholas Bell aff001;  Ary A. Hoffmann aff001
Působiště autorů: Pest and Environmental Adaptation Research Group, School of BioSciences, The University of Melbourne, Victoria, Australia aff001
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225321

Souhrn

With Wolbachia-based arbovirus control programs being scaled and operationalised around the world, cost effective and reliable detection of Wolbachia in field samples and laboratory stocks is essential for quality control. Here we validate a modified loop-mediated isothermal amplification (LAMP) assay for routine scoring of Wolbachia in mosquitoes from laboratory cultures and the field, applicable to any setting. We show that this assay is a rapid and robust method for highly sensitive and specific detection of wAlbB Wolbachia infection within Aedes aegypti under a variety of conditions. We test the quantitative nature of the assay by evaluating pooled mixtures of Wolbachia-infected and uninfected mosquitoes and show that it is capable of estimating infection frequencies, potentially circumventing the need to perform large-scale individual analysis for wAlbB infection status in the course of field monitoring. These results indicate that LAMP assays are useful for routine screening particularly under field conditions away from laboratory facilities.

Klíčová slova:

Adults – Aedes aegypti – Arboviral infections – DNA extraction – Ethanol – Mosquitoes – Polymerase chain reaction – Wolbachia


Zdroje

1. Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature. 2011;476(7361):454–7. http://www.nature.com/nature/journal/v476/n7361/abs/nature10356.html#supplementary-information 21866160

2. Nazni WA, Hoffmann AA, Afizah AN, Cheong YL, Mancini MV, Golding N, et al. Establishment of Wolbachia strain wAlbB in Malaysian populations of Aedes aegypti for dengue control. bioRxiv. 2019:775965. doi: 10.1101/775965

3. Bourtzis K, Dobson SL, Xi Z, Rasgon JL, Calvitti M, Moreira LA, et al. Harnessing mosquito-Wolbachia symbiosis for vector and disease control. Acta Tropica. 2014;132:S150–S63. doi: 10.1016/j.actatropica.2013.11.004 24252486

4. Garcia GdA, Sylvestre G, Aguiar R, da Costa GB, Martins AJ, Lima JBP, et al. Matching the genetics of released and local Aedes aegypti populations is critical to assure Wolbachia invasion. PLOS Neglected Tropical Diseases. 2019;13(1):e0007023. doi: 10.1371/journal.pntd.0007023 30620733

5. Nguyen TH, Le Nguyen H, Nguyen TY, Vu SN, Tran ND, Le TN, et al. Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control. Parasites Vectors. 2015;8:14.

6. Schmidt TL, Barton NH, Rasic G, Turley AP, Montgomery BL, Iturbe-Ormaetxe I, et al. Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti. PLoS Biology. 2017;15(5):e2001894. doi: 10.1371/journal.pbio.2001894 28557993.

7. Lee SF, White VL, Weeks AR, Hoffmann AA, Endersby NM. High-throughput PCR assays to monitor Wolbachia infection in the dengue mosquito (Aedes aegypti) and Drosophila simulans. Applied and Environmental Microbiology. 2012;78(13):4740–3. doi: 10.1128/AEM.00069-12 22522691

8. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research. 2000;28(12):7. doi: 10.1093/nar/28.12.e63 10871386

9. Nagamine K, Hase T, Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Molecular and Cellular Probes. 2002;16(3):223–9. doi: 10.1006/mcpr.2002.0415 12144774

10. Lucchi NW, Demas A, Narayanan J, Sumari D, Kabanywanyi A, Kachur SP, et al. Real-Time Fluorescence Loop Mediated Isothermal Amplification for the diagnosis of malaria. PLoS One. 2010;5(10):e13733. doi: 10.1371/journal.pone.0013733 21060829

11. Lucchi NW, Ndiaye D, Britton S, Udhayakumar V. Expanding the malaria molecular diagnostic options: opportunities and challenges for loop-mediated isothermal amplification tests for malaria control and elimination. Expert Review of Molecular Diagnostics. 2018;18(2):195–203. doi: 10.1080/14737159.2018.1431529 29353522

12. Parida M, Posadas G, Inoue S, Hasebe F, Morita K. Real-Time Reverse Transcription Loop-Mediated Isothermal Amplification for rapid detection of West Nile Virus. Journal of Clinical Microbiology. 2004;42(1):257–63. doi: 10.1128/JCM.42.1.257-263.2004 14715762

13. Wheeler SS, Ball CS, Langevin SA, Fang Y, Coffey LL, Meagher RJ. Surveillance for Western Equine Encephalitis, St. Louis Encephalitis, and West Nile Viruses using Reverse Transcription Loop-Mediated Isothermal Amplification. PLoS One. 2016;11(1):e0147962. Epub 2016/01/26. doi: 10.1371/journal.pone.0147962 26807734

14. Dauner AL, Mitra I, Gilliland T Jr., Seales S, Pal S, Yang SC, et al. Development of a pan-serotype reverse transcription loop-mediated isothermal amplification assay for the detection of dengue virus. Diagnostic Microbiology and Infectious Disease. 2015;83(1):30–6. Epub 2015/06/03. doi: 10.1016/j.diagmicrobio.2015.05.004 26032430.

15. Lee PLM. DNA amplification in the field: move over PCR, here comes LAMP. Molecular Ecology Resources. 2017;17(2):138–41. doi: 10.1111/1755-0998.12548 28211246

16. Gonçalves DD, Cassimiro APA, de Oliveira CD, Rodrigues NB, Moreira LA. Wolbachia detection in insects through LAMP: loop mediated isothermal amplification. Parasites Vectors. 2014;7. doi: 10.1186/1756-3305-7-228 24885509

17. Bhadra S, Riedel TE, Saldana MA, Hegde S, Pederson N, Hughes GL, et al. Direct nucleic acid analysis of mosquitoes for high fidelity species identification and detection of Wolbachia using a cellphone. PLOS Neglected Tropical Diseases. 2018;12(8):e0006671. Epub 2018/08/31. doi: 10.1371/journal.pntd.0006671 30161131.

18. Kulkarni A, Yu W, Jiang J, Sanchez C, Karna AK, Martinez KJ, et al. Wolbachia pipientis occurs in Aedes aegypti populations in New Mexico and Florida, USA. Ecology and Evolution. 2019;9(10):6148–56. doi: 10.1002/ece3.5198 31161026

19. Noor-Shazleen-Husnie MM, Emelia O, Ahmad-Firdaus MS, Zainol-Ariffin P, Aishah-Hani A. Detection of Wolbachia in wild mosquito populations from selected areas in Peninsular Malaysia by loop-mediated isothermal amplification (LAMP) technique. Tropical Biomedicine. 2018;35(2):330–46.

20. Aoi Y, Hosogai M, Tsuneda S. Real-time quantitative LAMP (loop-mediated isothermal amplification of DNA) as a simple method for monitoring ammonia-oxidizing bacteria. Journal of Biotechnology. 2006;125(4):484–91. Epub 2006/06/23. doi: 10.1016/j.jbiotec.2006.04.007 16790287.

21. Fujiwara-Nagata E, Eguchi M. Development and evaluation of a loop-mediated isothermal amplification assay for rapid and simple detection of Flavobacterium psychrophilum. Journal of Fish Diseases. 2009;32(10):873–81. Epub 2009/06/09. doi: 10.1111/j.1365-2761.2009.01066.x 19500209.

22. Chen BJ, Mani V, Huang ST, Hu YC, Shan HP. Bisintercalating DNA redox reporters for real-time electrochemical qLAMP. Biosensors and Bioelectronics. 2019;129:277–83. Epub 2018/09/30. doi: 10.1016/j.bios.2018.09.056 30266426.

23. Su Y, Huang S, Hong L, Zou D, Tang Y, Chao S, et al. Establishment of the molecular beacon-loop-mediated isothermal amplification method for the rapid detection of Porphyromonas gingivalis. Journal of Microbiological Methods. 2019;160:68–72. Epub 2019/03/30. doi: 10.1016/j.mimet.2019.01.013 30922631.

24. Schenkel CD, Kamber T, Schaffner F, Mathis A, Silaghi C. Loop-mediated isothermal amplification (LAMP) for the identification of invasive Aedes mosquito species. Medical and Veterinary Entomology. 2019;33(3):345–51. doi: 10.1111/mve.12366 30734975

25. Xi Z, Khoo CC, Dobson SL. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science (New York, NY). 2005;310(5746):326–8. Epub 2005/10/15. doi: 10.1126/science.1117607 16224027.

26. Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature. 2011;476(7361):450–3. http://www.nature.com/nature/journal/v476/n7361/abs/nature10355.html#supplementary-information 21866159

27. Ross PA, Ritchie SA, Axford JK, Hoffmann AA. Loss of cytoplasmic incompatibility in Wolbachia-infected Aedes aegypti under field conditions. PLOS Neglected Tropical Diseases. 2019;13(4):e0007357. doi: 10.1371/journal.pntd.0007357 31002720

28. Callahan AG, Ross PA, Hoffmann AA. Small females prefer small males: size assortative mating in Aedes aegypti mosquitoes. Parasites Vectors. 2018;11:7.

29. Ant TH, Herd CS, Geoghegan V, Hoffmann AA, Sinkins SP. The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti. PLoS Pathogens. 2018;14(1):19. doi: 10.1371/journal.ppat.1006815 29370307

30. Huang X, Lin X, Urmann K, Li L, Xie X, Jiang S, et al. Smartphone-based in-gel Loop-Mediated Isothermal Amplification (gLAMP) system enables rapid Coliphage MS2 quantification in environmental waters. Environmental Science & Technology. 2018;52(11):6399–407. Epub 2018/05/09. doi: 10.1021/acs.est.8b00241 29738236

31. Kitamura M, Kubo S, Tanaka J, Adachi T. Rapid screening method for male DNA by using the loop-mediated isothermal amplification assay. International Journal of Legal Medicine. 2018;132(4):975–81. Epub 2017/08/15. doi: 10.1007/s00414-017-1661-z 28803416.


Článek vyšel v časopise

PLOS One


2019 Číslo 11