Effects of 6-mercaptopurine in pressure overload induced right heart failure

Autoři: Julie Birkmose Axelsen aff001;  Stine Andersen aff001;  Xiao-Qing Sun aff002;  Steffen Ringgaard aff003;  Janus Adler Hyldebrandt aff004;  Kondababu Kurakula aff005;  Marie-José Goumans aff005;  Frances S. de Man aff002;  Jens Erik Nielsen-Kudsk aff001;  Harm-Jan Bogaard aff002;  Asger Andersen aff001
Působiště autorů: Department of Cardiology–Research, Aarhus University Hospital, Aarhus, Denmark aff001;  Department of Pulmonology, VU University Medical Center, Amsterdam, The Netherlands aff002;  MR Centre, Aarhus University Hospital, Aarhus, Denmark aff003;  Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark aff004;  Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands aff005
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225122



Several antineoplastic drugs have been proposed as new compounds for pulmonary arterial hypertension treatment but many have cardiotoxic side effects. The chemotherapeutic agent 6-mercaptopurine may have an effect in treatment of pulmonary arterial hypertension but at the same time, its effects on the afterload adaption of the right ventricle is unpredictable due to interaction with multiple downstream signalling pathways in the cardiomyocytes. We investigated the direct cardiac effects of 6-mercaptopurine in rats with isolated right heart failure caused by pulmonary trunk banding (PTB).


Male Wistar rat weanlings (112±2 g) were randomized to sham operation (sham, n = 10) or PTB. The PTB animals were randomized to placebo (PTB-control, n = 10) and 6-mercaptopurine (7.5 mg/kg/day) groups with treatment start before the PTB procedure (PTB-prevention, n = 10) or two weeks after (PTB-reversal, n = 10). Right ventricular effects were evaluated by echocardiography, cardiac MRI, invasive pressure-volume measurements, and histological and molecular analyses.


PTB increased right ventricular afterload and caused right ventricular hypertrophy and failure. 6-mercaptopurine did not improve right ventricular function nor reduce right ventricular remodelling in both prevention and reversal studies compared with placebo-treated rats.


Treatment with 6-mercaptopurine did not have any beneficial or detrimental effects on right ventricular function or remodelling. Our data suggest that treatment of pulmonary arterial hypertension with 6-mercaptopurine is not harmful to the failing right ventricle.

Klíčová slova:

Cardiac ventricles – Collagens – Fibrosis – Gene expression – Inflammation – Protein expression – Pulmonary hypertension – Surgical and invasive medical procedures


1. Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, et al. Survival in Patients With Idiopathic, Familial, and Anorexigen-Associated Pulmonary Arterial Hypertension in the Modern Management Era. Circulation. 2010;122(2):156–63. doi: 10.1161/CIRCULATIONAHA.109.911818 20585011

2. Peacock AJ, Murphy NF, McMurray JJ, Caballero L, Stewart S. An epidemiological study of pulmonary arterial hypertension. The European respiratory journal. 2007;30(1):104–9. doi: 10.1183/09031936.00092306 17360728

3. Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, et al. Pulmonary arterial hypertension in France: results from a national registry. Am J Respir Crit Care Med. 2006;173(9):1023–30. doi: 10.1164/rccm.200510-1668OC 16456139

4. van de Veerdonk MC, Marcus JT, Westerhof N, de Man FS, Boonstra A, Heymans MW, et al. Signs of Right Ventricular Deterioration in Clinically Stable Patients With Pulmonary Arterial Hypertension. Chest. 2015;147(4):1063–71. doi: 10.1378/chest.14-0701 25376008

5. van de Veerdonk MC, Kind T, Marcus JT, Mauritz G-J, Heymans MW, Bogaard H-J, et al. Progressive Right Ventricular Dysfunction in Patients With Pulmonary Arterial Hypertension Responding to Therapy. Journal of the American College of Cardiology. 2011;58(24):2511–9. doi: 10.1016/j.jacc.2011.06.068 22133851

6. Kane GC, Maradit-Kremers H, Slusser JP, Scott CG, Frantz RP, McGoon MD. Integration of clinical and hemodynamic parameters in the prediction of long-term survival in patients with pulmonary arterial hypertension. Chest. 2011;139(6):1285–93. doi: 10.1378/chest.10-1293 21071530

7. Thenappan T, Shah SJ, Rich S, Tian L, Archer SL, Gomberg-Maitland M. Survival in pulmonary arterial hypertension: a reappraisal of the NIH risk stratification equation. The European respiratory journal. 2010;35(5):1079–87. doi: 10.1183/09031936.00072709 20032020

8. Benza RL, Miller DP, Barst RJ, Badesch DB, Frost AE, McGoon MD. An Evaluation of Long-term Survival From Time of Diagnosis in Pulmonary Arterial Hypertension From the REVEAL Registry. Chest. 2012;142(2):448–56. doi: 10.1378/chest.11-1460 22281797

9. Aarbakke J, Janka-Schaub G, Elion GB. Thiopurine biology and pharmacology. Trends in Pharmacological Sciences. 1997;18(1):3–7. doi: 10.1016/s0165-6147(96)01007-3 9114722

10. Innocenti F, Danesi R, Bocci G, Fogli S, Di Paolo A, Del Tacca M. Metabolism of 6-mercaptopurine in the erythrocytes, liver, and kidney of rats during multiple-dose regimens. Cancer chemotherapy and pharmacology. 1999;43(2):133–40. doi: 10.1007/s002800050873 9923818

11. Marinkovic G, Kroon J, Hoogenboezem M, Hoeben KA, Ruiter MS, Kurakula K, et al. Inhibition of GTPase Rac1 in endothelium by 6-mercaptopurine results in immunosuppression in nonimmune cells: new target for an old drug. Journal of immunology (Baltimore, Md: 1950). 2014;192(9):4370–8.

12. Wansa KD, Harris JM, Yan G, Ordentlich P, Muscat GE. The AF-1 domain of the orphan nuclear receptor NOR-1 mediates trans-activation, coactivator recruitment, and activation by the purine anti-metabolite 6-mercaptopurine. The Journal of biological chemistry. 2003;278(27):24776–90. doi: 10.1074/jbc.M300088200 12709428

13. Pires NM, Pols TW, de Vries MR, van Tiel CM, Bonta PI, Vos M, et al. Activation of nuclear receptor Nur77 by 6-mercaptopurine protects against neointima formation. Circulation. 2007;115(4):493–500. doi: 10.1161/CIRCULATIONAHA.106.626838 17242285

14. Kurakula K, Sun X-Q, Happé C, da Silva Goncalves Bos D, Szulcek R, Schalij I, et al. 6-mercaptopurine, an agonist of Nur77, reduces progression of pulmonary hypertension by enhancing BMP signalling. European Respiratory Journal. 2019:1802400. doi: 10.1183/13993003.02400-2018 31273046

15. Medzikovic L, Schumacher CA, Verkerk AO, van Deel ED, Wolswinkel R, van der Made I, et al. Orphan nuclear receptor Nur77 affects cardiomyocyte calcium homeostasis and adverse cardiac remodelling. Scientific reports. 2015;5:15404. doi: 10.1038/srep15404 26486271

16. Yan G, Zhu N, Huang S, Yi B, Shang X, Chen M, et al. Orphan Nuclear Receptor Nur77 Inhibits Cardiac Hypertrophic Response to Beta-Adrenergic Stimulation. Mol Cell Biol. 2015;35(19):3312–23. doi: 10.1128/MCB.00229-15 26195821

17. Wang RH, He JP, Su ML, Luo J, Xu M, Du XD, et al. The orphan receptor TR3 participates in angiotensin II-induced cardiac hypertrophy by controlling mTOR signalling. EMBO molecular medicine. 2013;5(1):137–48. doi: 10.1002/emmm.201201369 23197407

18. You X, Guo ZF, Cheng F, Yi B, Yang F, Liu X, et al. Transcriptional up-regulation of relaxin-3 by Nur77 attenuates beta-adrenergic agonist-induced apoptosis in cardiomyocytes. The Journal of biological chemistry. 2018;293(36):14001–11. doi: 10.1074/jbc.RA118.003099 30006349

19. Lu C, Qin F, Yan Y, Liu T, Li J, Chen H. Immunosuppressive treatment for myocarditis: a meta-analysis of randomized controlled trials. Journal of Cardiovascular Medicine. 2016;17(8):631–7. doi: 10.2459/JCM.0000000000000134 25003999

20. Wojnicz R, Nowalany-Kozielska E, Wojciechowska C, Glanowska G, Wilczewski P, Niklewski T, et al. Randomized, placebo-controlled study for immunosuppressive treatment of inflammatory dilated cardiomyopathy: two-year follow-up results. Circulation. 2001;104(1):39–45. doi: 10.1161/01.cir.104.1.39 11435335

21. Frustaci A, Chimenti C, Russo MA. Randomized study on the efficacy of immunosuppressive therapy in patients with virus-negative inflammatory cardiomyopathy: the TIMIC study. European heart journal. 2009;30(16):1995–2002. doi: 10.1093/eurheartj/ehp249 19556262

22. Camargo PR, Snitcowsky R, da Luz PL, Mazzieri R, Higuchi ML, Rati M, et al. Favorable effects of immunosuppressive therapy in children with dilated cardiomyopathy and active myocarditis. Pediatric Cardiology. 1995;16(2):61–8. doi: 10.1007/BF00796819 7784236

23. Frustaci A, Chimenti C, Pieroni M, Salvatori L, Morgante E, Sale P, et al. Cell death, proliferation and repair in human myocarditis responding to immunosuppressive therapy. Modern Pathology. 2006;19:755. doi: 10.1038/modpathol.3800594 16575400

24. Ibrahim YF, Shults NV, Rybka V, Suzuki YJ. Docetaxel Reverses Pulmonary Vascular Remodeling by Decreasing Autophagy and Resolves Right Ventricular Fibrosis. The Journal of pharmacology and experimental therapeutics. 2017;363(1):20–34. doi: 10.1124/jpet.117.239921 28760737

25. Wang X, Ibrahim YF, Das D, Zungu-Edmondson M, Shults NV, Suzuki YJ. Carfilzomib reverses pulmonary arterial hypertension. Cardiovasc Res. 2016;110(2):188–99. doi: 10.1093/cvr/cvw047 26952044

26. Albini A, Pennesi G, Donatelli F, Cammarota R, De Flora S, Noonan DM. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. Journal of the National Cancer Institute. 2010;102(1):14–25. doi: 10.1093/jnci/djp440 20007921

27. Sun X-Q, Kurakula K, Happé C, da Silva Goncalves Bos D, Schalij I, Vonk-Noordegraaf A, et al. The effect of 6-mercaptopurine treatment on experimentally induced pulmonary arterial hypertension. European Respiratory Journal. 2017;50(suppl 61):OA4660.

28. Mercaptopurine (Rx) [updated February 2019; cited 2019 9/11]. In Medscape—Drugs & Diseases. Available from: https://reference.medscape.com/drug/purinethol-purixan-mercaptopurine-342094.

29. Andersen S, Schultz JG, Holmboe S, Axelsen JB, Hansen MS, Lyhne MD, et al. A Pulmonary Trunk Banding Model of Pressure Overload Induced Right Ventricular Hypertrophy and Failure. Journal of visualized experiments: JoVE. 2018(141).

30. Borgdorff MAJ, Dickinson MG, Berger RMF, Bartelds B. Right ventricular failure due to chronic pressure load: What have we learned in animal models since the NIH working group statement? Heart Failure Reviews. 2015;20(4):475–91. doi: 10.1007/s10741-015-9479-6 25771982

31. Stepnowska E, Lewicka E, Dabrowska-Kugacka A, Miekus P, Raczak G. Prognostic factors in pulmonary arterial hypertension: Literature review. Advances in clinical and experimental medicine: official organ Wroclaw Medical University. 2017;26(3):549–53.

32. Vonk-Noordegraaf A, Haddad F, Chin KM, Forfia PR, Kawut SM, Lumens J, et al. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol. 2013;62(25 Suppl):D22–33. doi: 10.1016/j.jacc.2013.10.027 24355638

33. Lowes BD, Minobe W, Abraham WT, Rizeq MN, Bohlmeyer TJ, Quaife RA, et al. Changes in gene expression in the intact human heart. Downregulation of alpha-myosin heavy chain in hypertrophied, failing ventricular myocardium. The Journal of clinical investigation. 1997;100(9):2315–24. doi: 10.1172/JCI119770 9410910

34. Bogaard HJ, Abe K, Vonk Noordegraaf A, Voelkel NF. The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest. 2009;135(3):794–804. doi: 10.1378/chest.08-0492 19265089

35. Zungu-Edmondson M, Shults NV, Wong C-M, Suzuki YJ. Modulators of right ventricular apoptosis and contractility in a rat model of pulmonary hypertension. Cardiovascular Research. 2016;110(1):30–9. doi: 10.1093/cvr/cvw014 26790474

36. Okada M, Harada T, Kikuzuki R, Yamawaki H, Hara Y. Effects of telmisartan on right ventricular remodeling induced by monocrotaline in rats. Journal of pharmacological sciences. 2009;111(2):193–200. doi: 10.1254/jphs.09112fp 19809219

37. Nagaya N, Nishikimi T, Uematsu M, Satoh T, Kyotani S, Sakamaki F, et al. Plasma brain natriuretic peptide as a prognostic indicator in patients with primary pulmonary hypertension. Circulation. 2000;102(8):865–70. doi: 10.1161/01.cir.102.8.865 10952954

38. Schultz JG, Andersen S, Andersen A, Nielsen-Kudsk JE, Nielsen JM. Evaluation of cardiac electrophysiological properties in an experimental model of right ventricular hypertrophy and failure. Cardiology in the young. 2016;26(3):451–8. doi: 10.1017/S1047951115000402 25872028

39. Lopez B, Gonzalez A, Hermida N, Valencia F, de Teresa E, Diez J. Role of lysyl oxidase in myocardial fibrosis: from basic science to clinical aspects. American journal of physiology Heart and circulatory physiology. 2010;299(1):H1–9. doi: 10.1152/ajpheart.00335.2010 20472764

40. Smith-Mungo LI, Kagan HM. Lysyl oxidase: properties, regulation and multiple functions in biology. Matrix biology: journal of the International Society for Matrix Biology. 1998;16(7):387–98.

41. López B, González A, Lindner D, Westermann D, Ravassa S, Beaumont J, et al. Osteopontin-mediated myocardial fibrosis in heart failure: a role for lysyl oxidase? Cardiovascular Research. 2013;99(1):111–20. doi: 10.1093/cvr/cvt100 23619422

42. Daniels A, van Bilsen M, Goldschmeding R, van der Vusse GJ, van Nieuwenhoven FA. Connective tissue growth factor and cardiac fibrosis. Acta physiologica (Oxford, England). 2009;195(3):321–38.

43. Rain S, Andersen S, Najafi A, Gammelgaard Schultz J, da Silva Gonçalves Bós D, Handoko ML, et al. Right Ventricular Myocardial Stiffness in Experimental Pulmonary Arterial Hypertension. Relative Contribution of Fibrosis and Myofibril Stiffness. 2016;9(7).

44. Mendes-Ferreira P, Santos-Ribeiro D, Adao R, Maia-Rocha C, Mendes-Ferreira M, Sousa-Mendes C, et al. Distinct right ventricle remodeling in response to pressure overload in the rat. American journal of physiology Heart and circulatory physiology. 2016;311(1):H85–95. doi: 10.1152/ajpheart.00089.2016 27199115

45. Egemnazarov B, Crnkovic S, Nagy BM, Olschewski H, Kwapiszewska G. Right ventricular fibrosis and dysfunction: Actual concepts and common misconceptions. Matrix biology: journal of the International Society for Matrix Biology. 2018;68–69:507–21.

46. Esfandiary A, Kutsche HS, Schreckenberg R, Weber M, Pak O, Kojonazarov B, et al. Protection against pressure overload-induced right heart failure by uncoupling protein 2 silencing. Cardiovascular Research. 2019;115(7):1217–27. doi: 10.1093/cvr/cvz049 30850841

47. Cheng TC, Philip JL, Tabima DM, Hacker TA, Chesler NC. Multiscale structure-function relationships in right ventricular failure due to pressure overload. American journal of physiology Heart and circulatory physiology. 2018;315(3):H699–h708. doi: 10.1152/ajpheart.00047.2018 29882684

48. Cartledge JE, Kane C, Dias P, Tesfom M, Clarke L, McKee B, et al. Functional crosstalk between cardiac fibroblasts and adult cardiomyocytes by soluble mediators. Cardiovasc Res. 2015;105(3):260–70. doi: 10.1093/cvr/cvu264 25560320

49. Fujiu K, Nagai R. Fibroblast-mediated pathways in cardiac hypertrophy. J Mol Cell Cardiol. 2014;70:64–73. doi: 10.1016/j.yjmcc.2014.01.013 24492068

50. Zhou H, Wang J, Zhu P, Zhu H, Toan S, Hu S, et al. NR4A1 aggravates the cardiac microvascular ischemia reperfusion injury through suppressing FUNDC1-mediated mitophagy and promoting Mff-required mitochondrial fission by CK2alpha. Basic research in cardiology. 2018;113(4):23. doi: 10.1007/s00395-018-0682-1 29744594

51. Zheng J, Wei C-C, Hase N, Shi K, Killingsworth CR, Litovsky SH, et al. Chymase Mediates Injury and Mitochondrial Damage in Cardiomyocytes during Acute Ischemia/Reperfusion in the Dog. PLOS ONE. 2014;9(4):e94732. doi: 10.1371/journal.pone.0094732 24733352

52. Cheng Z, Volkers M, Din S, Avitabile D, Khan M, Gude N, et al. Mitochondrial translocation of Nur77 mediates cardiomyocyte apoptosis. European heart journal. 2011;32(17):2179–88. doi: 10.1093/eurheartj/ehq496 21228009

53. Sun XQ, Abbate A, Bogaard HJ. Role of cardiac inflammation in right ventricular failure. Cardiovasc Res. 2017;113(12):1441–52. doi: 10.1093/cvr/cvx159 28957536

54. Braun MU, Szalai P, Strasser RH, Borst MM. Right ventricular hypertrophy and apoptosis after pulmonary artery banding: regulation of PKC isozymes. Cardiovasc Res. 2003;59(3):658–67. doi: 10.1016/s0008-6363(03)00470-x 14499867

55. Soon E, Holmes AM, Treacy CM, Doughty NJ, Southgate L, Machado RD, et al. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation. 2010;122(9):920–7. doi: 10.1161/CIRCULATIONAHA.109.933762 20713898

56. Yoshida K, Abe K, Saku K, Sunagawa K. Inhibition of Nuclear Factor-kappaB-Mediated Inflammation Reverses Fibrosis and Improves RV Function in Rats with Pulmonary Artery Banding. Journal of Cardiac Failure.22(9):S198.

57. Handoko ML, de Man FS, Happé CM, Schalij I, Musters RJP, Westerhof N, et al. Opposite Effects of Training in Rats With Stable and Progressive Pulmonary Hypertension. Circulation. 2009;120(1):42–9. doi: 10.1161/CIRCULATIONAHA.108.829713 19546388

58. Handoko ML, de Man FS, Allaart CP, Paulus WJ, Westerhof N, Vonk-Noordegraaf A. Perspectives on novel therapeutic strategies for right heart failure in pulmonary arterial hypertension: lessons from the left heart. European respiratory review: an official journal of the European Respiratory Society. 2010;19(115):72–82.

59. Ordentlich P, Yan Y, Zhou S, Heyman RA. Identification of the Antineoplastic Agent 6-Mercaptopurine as an Activator of the Orphan Nuclear Hormone Receptor Nurr1. Journal of Biological Chemistry. 2003;278(27):24791–9. doi: 10.1074/jbc.M302167200 12709433

60. Huang H-Y, Chang H-F, Tsai M-J, Chen J-S, Wang M-J. 6-Mercaptopurine attenuates tumor necrosis factor-α production in microglia through Nur77-mediated transrepression and PI3K/Akt/mTOR signaling-mediated translational regulation. Journal of neuroinflammation. 2016;13(1):78–. doi: 10.1186/s12974-016-0543-5 27075886

61. Yoo YG, Na TY, Yang WK, Kim HJ, Lee IK, Kong G, et al. 6-Mercaptopurine, an activator of Nur77, enhances transcriptional activity of HIF-1alpha resulting in new vessel formation. Oncogene. 2007;26(26):3823–34. doi: 10.1038/sj.onc.1210149 17146432

62. Lennard L. The clinical pharmacology of 6-mercaptopurine. European Journal of Clinical Pharmacology. 1992;43(4):329–39. doi: 10.1007/bf02220605 1451710

63. Cuffari C, Theoret Y, Latour S, Seidman G. 6-Mercaptopurine metabolism in Crohn's disease: correlation with efficacy and toxicity. Gut. 1996;39(3):401–6. doi: 10.1136/gut.39.3.401 8949645

64. Gao X-F, Zhang J-J, Jiang X-M, Ge Z, Wang Z-M, Li B, et al. Targeted drugs for pulmonary arterial hypertension: a network meta-analysis of 32 randomized clinical trials. Patient preference and adherence. 2017;11:871–85. doi: 10.2147/PPA.S133288 28507431

65. Wu J, Bu L, Gong H, Jiang G, Li L, Ma H, et al. Effects of heart rate and anesthetic timing on high-resolution echocardiographic assessment under isoflurane anesthesia in mice. Journal of ultrasound in medicine: official journal of the American Institute of Ultrasound in Medicine. 2010;29(12):1771–8.

Článek vyšel v časopise


2019 Číslo 11