Integrated pan-cancer gene expression and drug sensitivity analysis reveals SLFN11 mRNA as a solid tumor biomarker predictive of sensitivity to DNA-damaging chemotherapy

Autoři: Kevin Shee aff001;  Jason D. Wells aff001;  Amanda Jiang aff001;  Todd W. Miller aff001
Působiště autorů: Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America aff001;  Comprehensive Breast Program, Dartmouth-Hitchcock Norris Cotton Cancer Center, Lebanon, New Hampshire, United States of America aff002
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224267



Precision oncology seeks to integrate multiple layers of data from a patient’s cancer to effectively tailor therapy. Conventional chemotherapies are sometimes effective but accompanied by adverse events, warranting the identification of a biomarker of chemosensitivity.


Identify an mRNA biomarker that predicts chemosensitivity across solid tumor subtypes.


We performed a pan-solid tumor analysis integrating gene expression and drug sensitivity profiles from 3 cancer cell line datasets to identify transcripts correlated with sensitivity to a panel of chemotherapeutics. We then tested the ability of an mRNA biomarker to predictive clinical outcomes in cohorts of patients with breast, lung, or ovarian cancer.


Expression levels of several mRNA transcripts were significantly correlated with sensitivity or resistance chemotherapeutics in cancer cell line datasets. The only mRNA transcript significantly correlated with sensitization to multiple classes of DNA-damaging chemotherapeutics in all 3 cell line datasets was encoded by Schlafen Family Member 11 (SLFN11). Analyses of multiple breast, lung, and ovarian cancer patient cohorts treated with chemotherapy confirmed SLFN11 mRNA expression as a predictive biomarker of longer overall survival and improved tumor response.


Tumor SLFN11 mRNA expression is a biomarker of sensitivity to an array of DNA-damaging chemotherapeutics across solid tumor subtypes.

Klíčová slova:

Biomarkers – Breast cancer – Cancer chemotherapy – Cancer treatment – Gene expression – Chemotherapeutic agents – Messenger RNA – Ovarian cancer


1. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. The New England journal of medicine. 2011;364(26):2507–16. Epub 2011/06/07. doi: 10.1056/NEJMoa1103782 21639808; PubMed Central PMCID: PMC3549296.

2. Sparano JA, Gray RJ, Makower DF, Pritchard KI, Albain KS, Hayes DF, et al. Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. The New England journal of medicine. 2018;379(2):111–21. Epub 2018/06/05. doi: 10.1056/NEJMoa1804710 29860917; PubMed Central PMCID: PMC6172658.

3. Morgan G, Ward R, Barton M. The contribution of cytotoxic chemotherapy to 5-year survival in adult malignancies. Clinical oncology. 2004;16(8):549–60. Epub 2005/01/06. doi: 10.1016/j.clon.2004.06.007 15630849.

4. Rees MG, Seashore-Ludlow B, Cheah JH, Adams DJ, Price EV, Gill S, et al. Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nature chemical biology. 2016;12(2):109–16. Epub 2015/12/15. doi: 10.1038/nchembio.1986 26656090; PubMed Central PMCID: PMC4718762.

5. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic acids research. 2013;41(Database issue):D955–61. Epub 2012/11/28. doi: 10.1093/nar/gks1111 23180760; PubMed Central PMCID: PMC3531057.

6. Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nature reviews Cancer. 2006;6(10):813–23. Epub 2006/09/23. doi: 10.1038/nrc1951 16990858.

7. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70. Epub 2012/09/25. doi: 10.1038/nature11412 23000897; PubMed Central PMCID: PMC3465532.

8. Cancer Genome Atlas Research N. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15. Epub 2011/07/02. doi: 10.1038/nature10166 21720365; PubMed Central PMCID: PMC3163504.

9. Cancer Genome Atlas Research N. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511(7511):543–50. Epub 2014/08/01. doi: 10.1038/nature13385 25079552; PubMed Central PMCID: PMC4231481.

10. Tang W, Zhou M, Dorsey TH, Prieto DA, Wang XW, Ruppin E, et al. Integrated proteotranscriptomics of breast cancer reveals globally increased protein-mRNA concordance associated with subtypes and survival. Genome medicine. 2018;10(1):94. Epub 2018/12/07. doi: 10.1186/s13073-018-0602-x 30501643; PubMed Central PMCID: PMC6276229.

11. Xie Y, Xiao G, Coombes KR, Behrens C, Solis LM, Raso G, et al. Robust gene expression signature from formalin-fixed paraffin-embedded samples predicts prognosis of non-small-cell lung cancer patients. Clinical cancer research: an official journal of the American Association for Cancer Research. 2011;17(17):5705–14. Epub 2011/07/12. doi: 10.1158/1078-0432.CCR-11-0196 21742808; PubMed Central PMCID: PMC3166982.

12. Botling J, Edlund K, Lohr M, Hellwig B, Holmberg L, Lambe M, et al. Biomarker discovery in non-small cell lung cancer: integrating gene expression profiling, meta-analysis, and tissue microarray validation. Clinical cancer research: an official journal of the American Association for Cancer Research. 2013;19(1):194–204. Epub 2012/10/04. doi: 10.1158/1078-0432.CCR-12-1139 23032747.

13. Yoshihara K, Tajima A, Yahata T, Kodama S, Fujiwara H, Suzuki M, et al. Gene expression profile for predicting survival in advanced-stage serous ovarian cancer across two independent datasets. PloS one. 2010;5(3):e9615. Epub 2010/03/20. doi: 10.1371/journal.pone.0009615 20300634; PubMed Central PMCID: PMC2837379.

14. Miyake T, Nakayama T, Naoi Y, Yamamoto N, Otani Y, Kim SJ, et al. GSTP1 expression predicts poor pathological complete response to neoadjuvant chemotherapy in ER-negative breast cancer. Cancer science. 2012;103(5):913–20. Epub 2012/02/11. doi: 10.1111/j.1349-7006.2012.02231.x 22320227.

15. Lisowska KM, Olbryt M, Dudaladava V, Pamula-Pilat J, Kujawa K, Grzybowska E, et al. Gene expression analysis in ovarian cancer—faults and hints from DNA microarray study. Frontiers in oncology. 2014;4:6. Epub 2014/01/31. doi: 10.3389/fonc.2014.00006 24478986; PubMed Central PMCID: PMC3904181.

16. Zoppoli G, Regairaz M, Leo E, Reinhold WC, Varma S, Ballestrero A, et al. Putative DNA/RNA helicase Schlafen-11 (SLFN11) sensitizes cancer cells to DNA-damaging agents. Proc Natl Acad Sci U S A. 2012;109(37):15030–5. Epub 2012/08/29. doi: 10.1073/pnas.1205943109 22927417; PubMed Central PMCID: PMC3443151.

17. Tang SW, Thomas A, Murai J, Trepel JB, Bates SE, Rajapakse VN, et al. Overcoming Resistance to DNA-Targeted Agents by Epigenetic Activation of Schlafen 11 (SLFN11) Expression with Class I Histone Deacetylase Inhibitors. Clinical cancer research: an official journal of the American Association for Cancer Research. 2018;24(8):1944–53. Epub 2018/02/03. doi: 10.1158/1078-0432.CCR-17-0443 29391350; PubMed Central PMCID: PMC5899656.

18. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001;293(5531):876–80. Epub 2001/06/26. doi: 10.1126/science.1062538 11423618.

19. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Science translational medicine. 2011;3(75):75ra26. Epub 2011/03/25. doi: 10.1126/scitranslmed.3002003 21430269; PubMed Central PMCID: PMC3132801.

20. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012;487(7408):500–4. Epub 2012/07/06. doi: 10.1038/nature11183 22763439; PubMed Central PMCID: PMC3711467.

21. Shee K, Yang W, Hinds JW, Hampsch RA, Varn FS, Traphagen NA, et al. Therapeutically targeting tumor microenvironment-mediated drug resistance in estrogen receptor-positive breast cancer. The Journal of experimental medicine. 2018;215(3):895–910. Epub 2018/02/14. doi: 10.1084/jem.20171818 29436393; PubMed Central PMCID: PMC5839765.

22. Schwarz DA, Katayama CD, Hedrick SM. Schlafen, a new family of growth regulatory genes that affect thymocyte development. Immunity. 1998;9(5):657–68. Epub 1998/12/10. doi: 10.1016/s1074-7613(00)80663-9 9846487.

23. Mavrommatis E, Fish EN, Platanias LC. The schlafen family of proteins and their regulation by interferons. Journal of interferon & cytokine research: the official journal of the International Society for Interferon and Cytokine Research. 2013;33(4):206–10. Epub 2013/04/11. doi: 10.1089/jir.2012.0133 23570387; PubMed Central PMCID: PMC3624771.

24. Li M, Kao E, Gao X, Sandig H, Limmer K, Pavon-Eternod M, et al. Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. Nature. 2012;491(7422):125–8. Epub 2012/09/25. doi: 10.1038/nature11433 23000900; PubMed Central PMCID: PMC3705913.

25. Murai J, Tang SW, Leo E, Baechler SA, Redon CE, Zhang H, et al. SLFN11 Blocks Stressed Replication Forks Independently of ATR. Molecular cell. 2018;69(3):371–84 e6. Epub 2018/02/06. doi: 10.1016/j.molcel.2018.01.012 29395061; PubMed Central PMCID: PMC5802881.

26. Mu Y, Lou J, Srivastava M, Zhao B, Feng XH, Liu T, et al. SLFN11 inhibits checkpoint maintenance and homologous recombination repair. EMBO Rep. 2016;17(1):94–109. Epub 2015/12/15. doi: 10.15252/embr.201540964 26658330; PubMed Central PMCID: PMC4718411.

27. Bates D, Eastman A. Microtubule destabilising agents: far more than just antimitotic anticancer drugs. Br J Clin Pharmacol. 2017;83(2):255–68. Epub 2016/10/19. doi: 10.1111/bcp.13126 27620987; PubMed Central PMCID: PMC5237681.

28. Li M, Kao E, Malone D, Gao X, Wang JYJ, David M. DNA damage-induced cell death relies on SLFN11-dependent cleavage of distinct type II tRNAs. Nat Struct Mol Biol. 2018;25(11):1047–58. Epub 2018/10/31. doi: 10.1038/s41594-018-0142-5 30374083; PubMed Central PMCID: PMC6579113.

29. Allison Stewart C, Tong P, Cardnell RJ, Sen T, Li L, Gay CM, et al. Dynamic variations in epithelial-to-mesenchymal transition (EMT), ATM, and SLFN11 govern response to PARP inhibitors and cisplatin in small cell lung cancer. Oncotarget. 2017;8(17):28575–87. Epub 2017/02/18. doi: 10.18632/oncotarget.15338 28212573; PubMed Central PMCID: PMC5438673.

30. Lok BH, Gardner EE, Schneeberger VE, Ni A, Desmeules P, Rekhtman N, et al. PARP Inhibitor Activity Correlates with SLFN11 Expression and Demonstrates Synergy with Temozolomide in Small Cell Lung Cancer. Clinical cancer research: an official journal of the American Association for Cancer Research. 2017;23(2):523–35. Epub 2016/07/22. doi: 10.1158/1078-0432.CCR-16-1040 27440269; PubMed Central PMCID: PMC5241177.

31. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603–7. Epub 2012/03/31. doi: 10.1038/nature11003 22460905; PubMed Central PMCID: PMC3320027.

32. Pietanza MC, Waqar SN, Krug LM, Dowlati A, Hann CL, Chiappori A, et al. Randomized, Double-Blind, Phase II Study of Temozolomide in Combination With Either Veliparib or Placebo in Patients With Relapsed-Sensitive or Refractory Small-Cell Lung Cancer. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2018;36(23):2386–94. Epub 2018/06/16. doi: 10.1200/JCO.2018.77.7672 29906251; PubMed Central PMCID: PMC6085179.

33. Sun S, Liang X, Zhang X, Liu T, Shi Q, Song Y, et al. Phosphoglycerate kinase-1 is a predictor of poor survival and a novel prognostic biomarker of chemoresistance to paclitaxel treatment in breast cancer. British journal of cancer. 2015;112(8):1332–9. Epub 2015/04/14. doi: 10.1038/bjc.2015.114 25867275; PubMed Central PMCID: PMC4402453.

34. Ataseven B, Gunesch A, Eiermann W, Kates RE, Hogel B, Knyazev P, et al. PTK7 as a potential prognostic and predictive marker of response to adjuvant chemotherapy in breast cancer patients, and resistance to anthracycline drugs. OncoTargets and therapy. 2014;7:1723–31. Epub 2014/10/23. doi: 10.2147/OTT.S62676 25336969; PubMed Central PMCID: PMC4199823.

35. Prebet T, Lhoumeau AC, Arnoulet C, Aulas A, Marchetto S, Audebert S, et al. The cell polarity PTK7 receptor acts as a modulator of the chemotherapeutic response in acute myeloid leukemia and impairs clinical outcome. Blood. 2010;116(13):2315–23. Epub 2010/06/19. doi: 10.1182/blood-2010-01-262352 20558616.

36. Sun G, Yang L, Dong C, Ma B, Shan M, Ma B. PRKDC regulates chemosensitivity and is a potential prognostic and predictive marker of response to adjuvant chemotherapy in breast cancer patients. Oncology reports. 2017;37(6):3536–42. Epub 2017/05/13. doi: 10.3892/or.2017.5634 28498431.

37. Bing F, Zhao Y. Screening of biomarkers for prediction of response to and prognosis after chemotherapy for breast cancers. OncoTargets and therapy. 2016;9:2593–600. Epub 2016/05/25. doi: 10.2147/OTT.S92350 27217777; PubMed Central PMCID: PMC4861001.

38. Tsunashima R, Naoi Y, Kagara N, Shimoda M, Shimomura A, Maruyama N, et al. Construction of multi-gene classifier for prediction of response to and prognosis after neoadjuvant chemotherapy for estrogen receptor positive breast cancers. Cancer letters. 2015;365(2):166–73. Epub 2015/06/09. doi: 10.1016/j.canlet.2015.05.030 26052094.

39. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2009;27(8):1160–7. Epub 2009/02/11. doi: 10.1200/JCO.2008.18.1370 19204204; PubMed Central PMCID: PMC2667820.

40. Chan N, Pires IM, Bencokova Z, Coackley C, Luoto KR, Bhogal N, et al. Contextual synthetic lethality of cancer cell kill based on the tumor microenvironment. Cancer research. 2010;70(20):8045–54. Epub 2010/10/07. doi: 10.1158/0008-5472.CAN-10-2352 20924112; PubMed Central PMCID: PMC2978949.

41. Alabaster O, Woods T, Ortiz-Sanchez V, Jahangeer S. Influence of microenvironmental pH on adriamycin resistance. Cancer research. 1989;49(20):5638–43. Epub 1989/10/15. 2790781.

42. Shee K, Jiang A, Varn FS, Liu S, Traphagen NA, Owens P, et al. Cytokine sensitivity screening highlights BMP4 pathway signaling as a therapeutic opportunity in ER(+) breast cancer. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2019;33(2):1644–57. Epub 2018/08/31. doi: 10.1096/fj.201801241R 30161001; PubMed Central PMCID: PMC6338642.

43. Tang SW, Bilke S, Cao L, Murai J, Sousa FG, Yamade M, et al. SLFN11 Is a Transcriptional Target of EWS-FLI1 and a Determinant of Drug Response in Ewing Sarcoma. Clinical cancer research: an official journal of the American Association for Cancer Research. 2015;21(18):4184–93. Epub 2015/03/18. doi: 10.1158/1078-0432.CCR-14-2112 25779942; PubMed Central PMCID: PMC4573368.

44. Deng Y, Cai Y, Huang Y, Yang Z, Bai Y, Liu Y, et al. High SLFN11 expression predicts better survival for patients with KRAS exon 2 wild type colorectal cancer after treated with adjuvant oxaliplatin-based treatment. BMC Cancer. 2015;15:833. Epub 2015/11/04. doi: 10.1186/s12885-015-1840-6 26525741; PubMed Central PMCID: PMC4631086.

45. Nogales V, Reinhold WC, Varma S, Martinez-Cardus A, Moutinho C, Moran S, et al. Epigenetic inactivation of the putative DNA/RNA helicase SLFN11 in human cancer confers resistance to platinum drugs. Oncotarget. 2016;7(3):3084–97. Epub 2015/12/02. doi: 10.18632/oncotarget.6413 26625211; PubMed Central PMCID: PMC4823092.

Článek vyšel v časopise


2019 Číslo 11