Protein:Protein interactions in the cytoplasmic membrane apparently influencing sugar transport and phosphorylation activities of the e. coli phosphotransferase system

Autoři: Mohammad Aboulwafa aff001;  Zhongge Zhang aff001;  Milton H. Saier, Jr. aff001
Působiště autorů: Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, United States of America aff001;  Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt aff002
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0219332


The multicomponent phosphoenolpyruvate (PEP)-dependent sugar-transporting phosphotransferase system (PTS) in Escherichia coli takes up sugar substrates from the medium and concomitantly phosphorylates them, releasing sugar phosphates into the cytoplasm. We have recently provided evidence that many of the integral membrane PTS permeases interact with the fructose PTS (FruA/FruB) [1]. However, the biochemical and physiological significance of this finding was not known. We have carried out molecular genetic/biochemical/physiological studies that show that interactions of the fructose PTS often enhance, but sometimes inhibit the activities of other PTS transporters many fold, depending on the target PTS system under study. Thus, the glucose (Glc), mannose (Man), mannitol (Mtl) and N-acetylglucosamine (NAG) permeases exhibit enhanced in vivo sugar transport and sometimes in vitro PEP-dependent sugar phosphorylation activities while the galactitol (Gat) and trehalose (Tre) systems show inhibited activities. This is observed when the fructose system is induced to high levels and prevented when the fruA/fruB genes are deleted. Overexpression of the fruA and/or fruB genes in the absence of fructose induction during growth also enhances the rates of uptake of other hexoses. The β-galactosidase activities of man, mtl, and gat-lacZ transcriptional fusions and the sugar-specific transphosphorylation activities of these enzyme transporters were not affected either by frustose induction or by fruAB overexpression, showing that the rates of synthesis of the target PTS permeases were not altered. We thus suggest that specific protein-protein interactions within the cytoplasmic membrane regulate transport in vivo (and sometimes the PEP-dependent phosphorylation activities in vitro) of PTS permeases in a physiologically meaningful way that may help to provide a hierarchy of preferred PTS sugars. These observations appear to be applicable in principle to other types of transport systems as well.

Klíčová slova:

Enzyme regulation – Hyperexpression techniques – Integral membrane proteins – Mannitol – Operons – Phosphorylation – Protein interactions – Fructoses


1. Babu M, Bundalovic-Torma C, Calmettes C, Phanse S, Zhang Q, Jiang Y, et al. Global landscape of cell envelope protein complexes in Escherichia coli. Nat Biotechnol. 2018;36(1):103–12. Epub 2017/11/28. doi: 10.1038/nbt.4024 29176613; PubMed Central PMCID: PMC5922438.

2. Lengeler JW. PTS 50: Past, Present and Future, or Diauxie Revisited. Journal of molecular microbiology and biotechnology. 2015;25(2–3):79–93. Epub 2015/07/15. doi: 10.1159/000369809 26159070.

3. McCoy JG, Levin EJ, Zhou M. Structural insight into the PTS sugar transporter EIIC. Biochimica et biophysica acta. 2015;1850(3):577–85. Epub 2014/03/25. doi: 10.1016/j.bbagen.2014.03.013 24657490; PubMed Central PMCID: PMC4169766.

4. Clore GM, Venditti V. Structure, dynamics and biophysics of the cytoplasmic protein-protein complexes of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Trends Biochem Sci. 2013;38(10):515–30. Epub 2013/09/24. doi: 10.1016/j.tibs.2013.08.003 24055245; PubMed Central PMCID: PMC3831880.

5. Bogdanov M, Aboulwafa M, Saier MH Jr., Subcellular localization and logistics of integral membrane protein biogenesis in Escherichia coli. Journal of molecular microbiology and biotechnology. 2013;23(1–2):24–34. Epub 2013/04/26. doi: 10.1159/000346517 23615193.

6. Gabor E, Gohler AK, Kosfeld A, Staab A, Kremling A, Jahreis K. The phosphoenolpyruvate-dependent glucose-phosphotransferase system from Escherichia coli K-12 as the center of a network regulating carbohydrate flux in the cell. Eur J Cell Biol. 2011;90(9):711–20. Epub 2011/05/31. doi: 10.1016/j.ejcb.2011.04.002 21621292.

7. Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev. 2006;70(4):939–1031. Epub 2006/12/13. doi: 10.1128/MMBR.00024-06 17158705; PubMed Central PMCID: PMC1698508.

8. Kotrba P, Inui M, Yukawa H. Bacterial phosphotransferase system (PTS) in carbohydrate uptake and control of carbon metabolism. J Biosci Bioeng. 2001;92(6):502–17. Epub 2005/10/20. doi: 10.1263/jbb.92.502 16233138.

9. Saier MH Jr., Reizer J. The bacterial phosphotransferase system: new frontiers 30 years later. Mol Microbiol. 1994;13(5):755–64. Epub 1994/09/01. doi: 10.1111/j.1365-2958.1994.tb00468.x 7815935.

10. Postma PW, Lengeler JW, Jacobson GR. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev. 1993;57(3):543–94. Epub 1993/09/01. 8246840; PubMed Central PMCID: PMC372926.

11. Tchieu JH, Norris V, Edwards JS, Saier MH Jr., The complete phosphotransferase system in Escherichia coli. Journal of molecular microbiology and biotechnology. 2001;3(3):329–46. Epub 2001/05/22. 11361063.

12. Saier MH Jr., Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G. The Transporter Classification Database (TCDB): recent advances. Nucleic Acids Res. 2016;44(D1):D372–9. Epub 2015/11/08. doi: 10.1093/nar/gkv1103 26546518; PubMed Central PMCID: PMC4702804.

13. Saier MH Jr., Reddy VS, Tamang DG, Vastermark A. The transporter classification database. Nucleic Acids Res. 2014;42(Database issue):D251–8. Epub 2013/11/15. doi: 10.1093/nar/gkt1097 24225317; PubMed Central PMCID: PMC3964967.

14. Saier MH Jr., Yen MR, Noto K, Tamang DG, Elkan C. The Transporter Classification Database: recent advances. Nucleic Acids Res. 2009;37(Database issue):D274–8. Epub 2008/11/22. doi: 10.1093/nar/gkn862 19022853; PubMed Central PMCID: PMC2686586.

15. Saier MH Jr., Tran CV, Barabote RD. TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res. 2006;34(Database issue):D181–6. Epub 2005/12/31. doi: 10.1093/nar/gkj001 16381841; PubMed Central PMCID: PMC1334385.

16. Aboulwafa M, Saier M Jr, Soluble sugar permeases of the phosphotransferase system in Escherichia coli: evidence for two physically distinct forms of the proteins in vivo. Mol Microbiol. 2003;48(1):131–41. Epub 2003/03/27. doi: 10.1046/j.1365-2958.2003.03394.x 12657050.

17. Saier MH Jr., Cox DF, Moczydlowski EG. Sugar phosphate:sugar transphosphorylation coupled to exchange group translocation catalyzed by the enzyme II complexes of the phosphoenolpyruvate:sugar phosphotransferase system in membrane vesicles of Escherichia coli. The Journal of biological chemistry. 1977;252(24):8908–16. Epub 1977/12/25. 336624.

18. Saier MH Jr., Feucht BU, Mora WK. Sugar phosphate: sugar transphosphorylation and exchange group translocation catalyzed by the enzyme 11 complexes of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. The Journal of biological chemistry. 1977;252(24):8899–907. Epub 1977/12/25. 336623.

19. Saier MH Jr., Newman MJ. Direct transfer of the phosphoryl moiety of mannitol 1-phosphate to [14C]mannitol catalyzed by the enzyme II complexes of the phosphoenolpyruvate: mannitol phosphotransferase systems in Spirochaeta aurantia and Salmonella typhimurium. The Journal of biological chemistry. 1976;251(12):3834–7. Epub 1976/06/25. 819432.

20. Saier MH Jr., Grenier FC, Lee CA, Waygood EB. Evidence for the evolutionary relatedness of the proteins of the bacterial phosphoenolpyruvate:sugar phosphotransferase system. J Cell Biochem. 1985;27(1):43–56. Epub 1985/01/01. doi: 10.1002/jcb.240270106 3884637.

21. Charbit A, Reizer J, Saier MH Jr., Function of the duplicated IIB domain and oligomeric structure of the fructose permease of Escherichia coli. The Journal of biological chemistry. 1996;271(17):9997–10003. Epub 1996/04/26. doi: 10.1074/jbc.271.17.9997 8626640.

22. Saier MH, Hvorup RN, Barabote RD. Evolution of the bacterial phosphotransferase system: from carriers and enzymes to group translocators. Biochem Soc Trans. 2005;33(Pt 1):220–4. Epub 2005/01/26. doi: 10.1042/BST0330220 15667312.

23. Chen JS, Reddy V, Chen JH, Shlykov MA, Zheng WH, Cho J, et al. Phylogenetic characterization of transport protein superfamilies: superiority of SuperfamilyTree programs over those based on multiple alignments. J Mol Microbiol Biotechnol. 2011;21(3–4):83–96. Epub 2012/01/31. doi: 10.1159/000334611 22286036; PubMed Central PMCID: PMC3290041.

24. Hvorup R, Chang AB, Saier MH Jr., Bioinformatic analyses of the bacterial L-ascorbate phosphotransferase system permease family. Journal of molecular microbiology and biotechnology. 2003;6(3–4):191–205. Epub 2004/05/22. doi: 10.1159/000077250 15153772.

25. Barabote RD, Saier MH Jr. Comparative genomic analyses of the bacterial phosphotransferase system. Microbiol Mol Biol Rev. 2005;69(4):608–34. Epub 2005/12/13. doi: 10.1128/MMBR.69.4.608-634.2005 16339738; PubMed Central PMCID: PMC1306802.

26. Higgins MA, Hamilton AM, Boraston AB. Structural characterization of the PTS IIA and IIB proteins associated with pneumococcal fucose utilization. Proteins. 2017;85(5):963–8. Epub 2017/02/09. doi: 10.1002/prot.25264 28168775.

27. Luo P, Yu X, Wang W, Fan S, Li X, Wang J. Crystal structure of a phosphorylation-coupled vitamin C transporter. Nat Struct Mol Biol. 2015;22(3):238–41. Epub 2015/02/17. doi: 10.1038/nsmb.2975 25686089.

28. Park J, Kim MS, Joo K, Jhon GJ, Berry EA, Lee J, et al. Crystal Structure of Hypothetical Fructose-Specific EIIB from Escherichia coli. Mol Cells. 2016;39(6):495–500. Epub 2016/05/25. doi: 10.14348/molcells.2016.0055 27215198; PubMed Central PMCID: PMC4916401.

29. Kalbermatter D, Jeckelmann JM, Chiu PL, Ucurum Z, Walz T, Fotiadis D. 2D and 3D crystallization of the wild-type IIC domain of the glucose PTS transporter from Escherichia coli. J Struct Biol. 2015;191(3):376–80. Epub 2015/08/12. doi: 10.1016/j.jsb.2015.08.003 26260226.

30. Orriss GL, Erni B, Schirmer T. Crystal structure of the IIB(Sor) domain of the sorbose permease from Klebsiella pneumoniae solved to 1.75A resolution. J Mol Biol. 2003;327(5):1111–9. Epub 2003/03/29. doi: 10.1016/s0022-2836(03)00215-8 12662934.

31. Woronowicz K, Sha D, Frese RN, Sturgis JN, Nanda V, Niederman RA. The effects of protein crowding in bacterial photosynthetic membranes on the flow of quinone redox species between the photochemical reaction center and the ubiquinol-cytochrome c2 oxidoreductase. Metallomics. 2011;3(8):765–74. Epub 2011/06/22. doi: 10.1039/c1mt00034a 21691621.

32. Ramadurai S, Holt A, Krasnikov V, van den Bogaart G, Killian JA, Poolman B. Lateral diffusion of membrane proteins. J Am Chem Soc. 2009;131(35):12650–6. Epub 2009/08/14. doi: 10.1021/ja902853g 19673517.

33. Schneider D, Pohl T, Walter J, Dorner K, Kohlstadt M, Berger A, et al. Assembly of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). Biochim Biophys Acta. 2008;1777(7–8):735–9. Epub 2008/04/09. doi: 10.1016/j.bbabio.2008.03.003 18394423.

34. Shepherd VA. The cytomatrix as a cooperative system of macromolecular and water networks. Curr Top Dev Biol. 2006;75:171–223. Epub 2006/09/21. doi: 10.1016/S0070-2153(06)75006-2 16984813.

35. Rodionova IA, Zhang Z, Mehla J, Goodacre N, Babu M, Emili A, et al. The phosphocarrier protein HPr of the bacterial phosphotransferase system globally regulates energy metabolism by directly interacting with multiple enzymes in Escherichia coli. The Journal of biological chemistry. 2017;292(34):14250–7. Epub 2017/06/22. doi: 10.1074/jbc.M117.795294 28634232; PubMed Central PMCID: PMC5572926.

36. Rodionova IA, Goodacre N, Babu M, Emili A, Uetz P, Saier MH Jr. The Nitrogen Regulatory PII Protein (GlnB) and N-Acetylglucosamine 6-Phosphate Epimerase (NanE) Allosterically Activate Glucosamine 6-Phosphate Deaminase (NagB) in Escherichia coli. Journal of bacteriology. 2018;200(5). Epub 2017/12/13. doi: 10.1128/JB.00691-17 29229699; PubMed Central PMCID: PMC5809692.

37. Saier MH Jr., Newman MJ, Rephaeli AW. Properties of a phosphoenolpyruvate: mannitol phosphotransferase system in Spirochaeta aurantia. J Biol Chem. 1977;252(24):8890–8. Epub 1977/12/25. 925030.

38. Somavanshi R, Ghosh B, Sourjik V. Sugar Influx Sensing by the Phosphotransferase System of Escherichia coli. PLoS Biol. 2016;14(8):e2000074. Epub 2016/08/25. doi: 10.1371/journal.pbio.2000074 27557415; PubMed Central PMCID: PMC4996493.

39. Lux R, Jahreis K, Bettenbrock K, Parkinson JS, Lengeler JW. Coupling the phosphotransferase system and the methyl-accepting chemotaxis protein-dependent chemotaxis signaling pathways of Escherichia coli. Proc Natl Acad Sci U S A. 1995;92(25):11583–7. Epub 1995/12/05. doi: 10.1073/pnas.92.25.11583 8524808; PubMed Central PMCID: PMC40446.

40. Neumann S, Grosse K, Sourjik V. Chemotactic signaling via carbohydrate phosphotransferase systems in Escherichia coli. Proc Natl Acad Sci U S A. 2012;109(30):12159–64. Epub 2012/07/11. doi: 10.1073/pnas.1205307109 22778402; PubMed Central PMCID: PMC3409764.

41. Garrity LF, Schiel SL, Merrill R, Reizer J, Saier MH Jr., Ordal GW. Unique regulation of carbohydrate chemotaxis in Bacillus subtilis by the phosphoenolpyruvate-dependent phosphotransferase system and the methyl-accepting chemotaxis protein McpC. Journal of bacteriology. 1998;180(17):4475–80. Epub 1998/08/29. 9721285; PubMed Central PMCID: PMC107457.

42. Yoo W, Kim D, Yoon H, Ryu S. Enzyme IIA(Ntr) Regulates Salmonella Invasion Via 1,2-Propanediol And Propionate Catabolism. Sci Rep. 2017;7:44827. Epub 2017/03/24. doi: 10.1038/srep44827 28333132; PubMed Central PMCID: PMC5363084.

43. Shimizu K. Regulation Systems of Bacteria such as Escherichia coli in Response to Nutrient Limitation and Environmental Stresses. Metabolites. 2013;4(1):1–35. Epub 2013/01/01. doi: 10.3390/metabo4010001 24958385; PubMed Central PMCID: PMC4018673.

44. Saier MH Jr. Regulatory interactions involving the proteins of the phosphotransferase system in enteric bacteria. J Cell Biochem. 1993;51(1):62–8. Epub 1993/01/01. doi: 10.1002/jcb.240510112 8432744.

45. Feucht BU, Saier MH Jr. Fine control of adenylate cyclase by the phosphoenolpyruvate:sugar phosphotransferase systems in Escherichia coli and Salmonella typhimurium. Journal of bacteriology. 1980;141(2):603–10. Epub 1980/02/01. 6245052; PubMed Central PMCID: PMC293665.

46. Postma PW. Defective enzyme II-BGlc of the phosphoenolpyruvate:sugar phosphotransferase system leading to uncoupling of transport and phosphorylation in Salmonella typhimurium. Journal of bacteriology. 1981;147(2):382–9. Epub 1981/08/01. 6267008; PubMed Central PMCID: PMC216056.

47. Manayan R, Tenn G, Yee HB, Desai JD, Yamada M, Saier MH Jr., Genetic analyses of the mannitol permease of Escherichia coli: isolation and characterization of a transport-deficient mutant which retains phosphorylation activity. Journal of bacteriology. 1988;170(3):1290–6. Epub 1988/03/01. doi: 10.1128/jb.170.3.1290-1296.1988 3277953; PubMed Central PMCID: PMC210905.

48. Rephaeli AW, Saier MH Jr. Kinetic analyses of the sugar phosphate:sugar transphosphorylation reaction catalyzed by the glucose enzyme II complex of the bacterial phosphotransferase system. The Journal of biological chemistry. 1978;253(21):7595–7. Epub 1978/11/10. 359550.

49. Saier MH Jr., Chauvaux S, Cook GM, Deutscher J, Paulsen IT, Reizer J, et al. Catabolite repression and inducer control in Gram-positive bacteria. Microbiology (Reading, England). 1996;142 (Pt 2):217–30. Epub 1996/02/01. doi: 10.1099/13500872-142-2-217 8932696.

50. Saier MH Jr. Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Microbiol Rev. 1989;53(1):109–20. Epub 1989/03/01. 2651862; PubMed Central PMCID: PMC372719.

51. Wu LF, Tomich JM, Saier MH Jr. Structure and evolution of a multidomain multiphosphoryl transfer protein. Nucleotide sequence of the fruB(HI) gene in Rhodobacter capsulatus and comparisons with homologous genes from other organisms. J Mol Biol. 1990;213(4):687–703. Epub 1990/06/20. doi: 10.1016/S0022-2836(05)80256-6 2193161.

52. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000;97(12):6640–5. Epub 2000/06/01. doi: 10.1073/pnas.120163297 10829079; PubMed Central PMCID: PMC18686.

53. Klumpp S, Zhang Z, Hwa T. Growth rate-dependent global effects on gene expression in bacteria. Cell. 2009;139(7):1366–75. Epub 2010/01/13. doi: 10.1016/j.cell.2009.12.001 20064380; PubMed Central PMCID: PMC2818994.

54. Aboulwafa M, Saier MH Jr. Biophysical studies of the membrane-embedded and cytoplasmic forms of the glucose-specific Enzyme II of the E. coli phosphotransferase system (PTS). PloS one. 2011;6(9):e24088. Epub 2011/09/22. doi: 10.1371/journal.pone.0024088 21935376; PubMed Central PMCID: PMC3174158.

55. Tian Z, Oda Y, Zhang Y, Yang M, Li H. Use of a new enzyme extraction system to improve the sensitivity of SOS/umu test and application to environmental samples. Bull Environ Contam Toxicol. 2015;94(3):370–5. Epub 2014/12/30. doi: 10.1007/s00128-014-1445-9 25542254.

56. JH M. Experiments in Molecular Genetics. Cold Spring Harbor Lab Press, Plainview, NY. 1972.

57. Aboulwafa M, Saier MH Jr. Dependency of sugar transport and phosphorylation by the phosphoenolpyruvate-dependent phosphotransferase system on membranous phosphatidyl glycerol in Escherichia coli: studies with a pgsA mutant lacking phosphatidyl glycerophosphate synthase. Res Microbiol. 2002;153(10):667–77. doi: 10.1016/s0923-2508(02)01376-1 12558186.

Článek vyšel v časopise


2019 Číslo 11