Evolutionarily conserved susceptibility of the mitochondrial respiratory chain to SDHI pesticides and its consequence on the impact of SDHIs on human cultured cells

Autoři: Paule Bénit aff001;  Agathe Kahn aff001;  Dominique Chretien aff001;  Sylvie Bortoli aff002;  Laurence Huc aff003;  Manuel Schiff aff001;  Anne-Paule Gimenez-Roqueplo aff005;  Judith Favier aff006;  Pierre Gressens aff001;  Malgorzata Rak aff001;  Pierre Rustin aff001
Působiště autorů: Université de Paris, NeuroDiderot, INSERM, Paris, France aff001;  Université de Paris, INSERM, UMR-S 1124, Paris, France aff002;  INRA UMR 1331 ToxAlim (Research Center in Food Toxicology), Université de Toulouse ENVT, INP, UPS, 180 Chemin de Tournefeuille, France aff003;  Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Service de neurologie et maladies métaboliques, Paris, France aff004;  Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, Paris, France aff005;  Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France aff006
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224132


Succinate dehydrogenase (SDH) inhibitors (SDHIs) are used worldwide to limit the proliferation of molds on plants and plant products. However, as SDH, also known as respiratory chain (RC) complex II, is a universal component of mitochondria from living organisms, highly conserved through evolution, the specificity of these inhibitors toward fungi warrants investigation. We first establish that the human, honeybee, earthworm and fungal SDHs are all sensitive to the eight SDHIs tested, albeit with varying IC50 values, generally in the micromolar range. In addition to SDH, we observed that five of the SDHIs, mostly from the latest generation, inhibit the activity of RC complex III. Finally, we show that the provision of glucose ad libitum in the cell culture medium, while simultaneously providing sufficient ATP and reducing power for antioxidant enzymes through glycolysis, allows the growth of RC-deficient cells, fully masking the deleterious effect of SDHIs. As a result, when glutamine is the major carbon source, the presence of SDHIs leads to time-dependent cell death. This process is significantly accelerated in fibroblasts derived from patients with neurological or neurodegenerative diseases due to RC impairment (encephalopathy originating from a partial SDH defect) and/or hypersensitivity to oxidative insults (Friedreich ataxia, familial Alzheimer’s disease).

Klíčová slova:

Earthworms – Fibroblasts – Glucose – Honey bees – Mitochondria – Sequence alignment – Glutamine – Quinones


1. Ackrell B, Johnson M, Gunsalus R, Cecchini G. Structure and function of succinate dehydrogenase and fumarate reductase. Muller F, editor. Boca Raton, FL CRC Press; 1990.

2. Her YF, Maher LJ 3rd. Succinate Dehydrogenase Loss in Familial Paraganglioma: Biochemistry, Genetics, and Epigenetics. Int J Endocrinol. 2015;2015:296167. Epub 2015/08/22. doi: 10.1155/2015/296167 26294907.

3. Bénit P, Letouze E, Rak M, Aubry L, Burnichon N, Favier J, et al. Unsuspected task for an old team: succinate, fumarate and other Krebs cycle acids in metabolic remodeling. Biochim Biophys Acta. 2014;1837(8):1330–7. Epub 2014/04/05. S0005-2728(14)00100-5 [pii] doi: 10.1016/j.bbabio.2014.03.013 24699309.

4. Francis K, Smitherman C, Nishino SF, Spain JC, Gadda G. The biochemistry of the metabolic poison propionate 3-nitronate and its conjugate acid, 3-nitropropionate. IUBMB Life. 2013;65(9):759–68. Epub 2013/07/31. doi: 10.1002/iub.1195 23893873.

5. Teplova VV, Belosludtsev KN, Kruglov AG. Mechanism of triclosan toxicity: Mitochondrial dysfunction including complex II inhibition, superoxide release and uncoupling of oxidative phosphorylation. Toxicol Lett. 2017;275:108–17. Epub 2017/05/10. S0378-4274(17)30172-8 [pii] doi: 10.1016/j.toxlet.2017.05.004 28478158.

6. Kruspig B, Valter K, Skender B, Zhivotovsky B, Gogvadze V. Targeting succinate:ubiquinone reductase potentiates the efficacy of anticancer therapy. Biochim Biophys Acta. 2016;1863(8):2065–71. Epub 2016/05/04. S0167-4889(16)30126-4 [pii] doi: 10.1016/j.bbamcr.2016.04.026 27140478.

7. Morin A, Letouze E, Gimenez-Roqueplo AP, Favier J. Oncometabolites-driven tumorigenesis: From genetics to targeted therapy. Int J Cancer. 2014;135(10):2237–48. Epub 2014/08/16. doi: 10.1002/ijc.29080 25124653.

8. Flannery PJ, Trushina E. Mitochondrial dynamics and transport in Alzheimer's disease. Mol Cell Neurosci. 2019;98:109–20. Epub 2019/06/20. S1044-7431(19)30094-6 [pii] doi: 10.1016/j.mcn.2019.06.009 31216425.

9. Chrétien D, Bénit P, Ha HH, Keipert S, El-Khoury R, Chang YT, et al. Mitochondria are physiologically maintained at close to 50 degrees C. PLoS Biol. 2018;16(1):e2003992. Epub 2018/01/26. doi: 10.1371/journal.pbio.2003992 pbio.2003992 [pii]. 29370167.

10. Neagu M, Constantin C, Popescu ID, Zipeto D, Tzanakakis G, Nikitovic D, et al. Inflammation and Metabolism in Cancer Cell-Mitochondria Key Player. Front Oncol. 2019;9:348. Epub 2019/05/30. doi: 10.3389/fonc.2019.00348 31139559.

11. Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol. 2018;20(7):745–54. Epub 2018/06/29. doi: 10.1038/s41556-018-0124-1 [pii]. 29950572.

12. Canto C, Menzies KJ, Auwerx J. NAD(+) Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. Cell Metab. 2015;22(1):31–53. Epub 2015/06/30. S1550-4131(15)00266-1 [pii] doi: 10.1016/j.cmet.2015.05.023 26118927.

13. Manoli I, Alesci S, Blackman MR, Su YA, Rennert OM, Chrousos GP. Mitochondria as key components of the stress response. Trends Endocrinol Metab. 2007;18(5):190–8. Epub 2007/05/15. S1043-2760(07)00069-0 [pii] doi: 10.1016/j.tem.2007.04.004 17500006.

14. Zhang H, Menzies KJ, Auwerx J. The role of mitochondria in stem cell fate and aging. Development. 2018;145(8). Epub 2018/04/15. 145/8/dev143420 [pii] doi: 10.1242/dev.143420 29654217.

15. Bénit P, Bortoli S, Chrétien D, Rak M, Rustin P. Pathologies liés au cycle de Krebs. Rev Francophone Laboratoires. 2018;501:49–57.

16. Mowery PC, Ackrell BA, Singer TP. Carboxins: powerful selective inhibitors of succinate oxidation in animal tissues. Biochem Biophys Res Commun. 1976;71(1):354–61. Epub 1976/07/12. 0006-291X(76)90290-4 [pii]. doi: 10.1016/0006-291x(76)90290-4 962926.

17. Rustin P, Chrétien D, Bourgeron T, Gérard B, Rotig A, Saudubray JM, et al. Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta. 1994;228(1):35–51. doi: 10.1016/0009-8981(94)90055-8 7955428.

18. Bourgeron T, Rustin P, Chrétien D, Birch-Machin M, Bourgeois M, Viegas-Pequignot E, et al. Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat Genet. 1995;11(2):144–9. doi: 10.1038/ng1095-144 7550341.

19. Bayot A, Reichman S, Lebon S, Csaba Z, Aubry L, Sterkers G, et al. Cis-silencing of PIP5K1B evidenced in Friedreich's ataxia patient cells results in cytoskeleton anomalies. Hum Mol Genet. 2013. Epub 2013/04/05. ddt144 [pii] doi: 10.1093/hmg/ddt144 23552101.

20. Bayot A, Reichman S, Lebon S, Csaba Z, Aubry L, Sterkers G, et al. Cis-silencing of PIP5K1B evidenced in Friedreich's ataxia patient cells results in cytoskeleton anomalies. Hum Mol Genet. 2013;22(14):2894–904. Epub 2013/04/05. ddt144 [pii] doi: 10.1093/hmg/ddt144 23552101.

21. Paupe V, Dassa EP, Goncalves S, Auchere F, Lonn M, Holmgren A, et al. Impaired nuclear Nrf2 translocation undermines the oxidative stress response in friedreich ataxia. PLoS ONE. 2009;4(1):e4253. doi: 10.1371/journal.pone.0004253 19158945.

22. Takeda M, Tatebayashi Y, Nishimura T. Change in the cytoskeletal system in fibroblasts from patients with familial Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry. 1992;16(3):317–28. Epub 1992/05/01. doi: 10.1016/0278-5846(92)90083-q 1589589.

23. Strachan GD, Morgan KL, Otis LL, Caltagarone J, Gittis A, Bowser R, et al. Fetal Alz-50 clone 1 interacts with the human orthologue of the Kelch-like Ech-associated protein. Biochemistry. 2004;43(38):12113–22. Epub 2004/09/24. doi: 10.1021/bi0494166 15379550.

24. Tesco G, Latorraca S, Piersanti P, Piacentini S, Amaducci L, Sorbi S. Alzheimer skin fibroblasts show increased susceptibility to free radicals. Mech Ageing Dev. 1992;66(2):117–20. Epub 1992/11/01. 0047-6374(92)90129-2 [pii]. doi: 10.1016/0047-6374(92)90129-2 1365838.

25. Tesco G, Latorraca S, Piersanti P, Sorbi S, Piacentini S, Amaducci L. Free radical injury in skin cultured fibroblasts from Alzheimer's disease patients. Ann N Y Acad Sci. 1992;673:149–53. Epub 1992/12/26. doi: 10.1111/j.1749-6632.1992.tb27446.x 1485712.

26. Bénit P, Goncalves S, Philippe Dassa E, Brière JJ, Martin G, Rustin P. Three spectrophotometric assays for the measurement of the five respiratory chain complexes in minuscule biological samples. Clin Chim Acta. 2006;374:81–6. doi: 10.1016/j.cca.2006.05.034 16828729.

27. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47(3):469–74. doi: 10.1111/j.1432-1033.1974.tb03714.x 4215654.

28. Papadopoulos JS, Agarwala R. COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics. 2007;23(9):1073–9. Epub 2007/03/03. btm076 [pii] doi: 10.1093/bioinformatics/btm076 17332019.

29. Sierotzki H, Scalliet G. A review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides. Phytopathology. 2013;103(9):880–7. Epub 2013/04/19. doi: 10.1094/PHYTO-01-13-0009-RVW 23593940.

30. Bénit P, Pelhaitre A, Saunier E, Bortoli S, Coulibaly A, Rak M, et al. Paradoxical Inhibition of Glycolysis by Pioglitazone Opposes the Mitochondriopathy Caused by AIF Deficiency. EBioMedicine. 2017;17:75–87. Epub 2017/02/24. S2352-3964(17)30072-5 [pii] doi: 10.1016/j.ebiom.2017.02.013 28229909.

31. Manel N, Kinet S, Kim FJ, Taylor N, Sitbon M, Battini JL. [GLUT-1 is the receptor of retrovirus HTLV]. Med Sci (Paris). 2004;20(3):277–9. Epub 2004/04/07. 007846ar [pii] doi: 10.1051/medsci/2004203277 15067572.

32. El-Hattab AW, Adesina AM, Jones J, Scaglia F. MELAS syndrome: Clinical manifestations, pathogenesis, and treatment options. Mol Genet Metab. 2015. Epub 2015/06/23. S1096-7192(15)30024-X [pii] doi: 10.1016/j.ymgme.2015.06.004 26095523.

33. Chantrel-Groussard K, Geromel V, Puccio H, Koenig M, Munnich A, Rotig A, et al. Disabled early recruitment of antioxidant defenses in Friedreich's ataxia. Hum Mol Genet. 2001;10(19):2061–7. doi: 10.1093/hmg/10.19.2061 11590123.

34. Graillot V, Tomasetig F, Cravedi JP, Audebert M. Evidence of the in vitro genotoxicity of methyl-pyrazole pesticides in human cells. Mutat Res. 2012;748(1–2):8–16. Epub 2012/06/30. S1383-5718(12)00224-0 [pii] doi: 10.1016/j.mrgentox.2012.05.014 22743356.

35. Bourgeron T, Chrétien D, Rotig A, Munnich A, Rustin P. Fate and expression of the deleted mitochondrial DNA differ between human heteroplasmic skin fibroblast and Epstein-Barr virus-transformed lymphocyte cultures. J Biol Chem. 1993;268(26):19369–76. 8396136.

36. Mota SI, Costa RO, Ferreira IL, Santana I, Caldeira GL, Padovano C, et al. Oxidative stress involving changes in Nrf2 and ER stress in early stages of Alzheimer's disease. Biochim Biophys Acta. 2015;1852(7):1428–41. Epub 2015/04/11. S0925-4439(15)00106-4 [pii] doi: 10.1016/j.bbadis.2015.03.015 25857617.

37. Majd S, Power JHT. Oxidative Stress and Decreased Mitochondrial Superoxide Dismutase 2 and Peroxiredoxins 1 and 4 Based Mechanism of Concurrent Activation of AMPK and mTOR in Alzheimer's Disease. Curr Alzheimer Res. 2018;15(8):764–76. Epub 2018/02/24. CAR-EPUB-88760 [pii] doi: 10.2174/1567205015666180223093020 29473507.

38. Singer TP, Ramsay RR, Ackrell BA. Deficiencies of NADH and succinate dehydrogenases in degenerative diseases and myopathies. Biochim Biophys Acta. 1995;1271(1):211–9. Epub 1995/05/24. 0925-4439(95)00030-8 [pii]. doi: 10.1016/0925-4439(95)00030-8 7599211.

39. Faske TR, Hurd K. Sensitivity of Meloidogyne incognita and Rotylenchulus reniformis to Fluopyram. J Nematol. 2015;47(4):316–21. Epub 2016/03/05. 26941460.

40. Qian L, Zhang J, Chen X, Qi S, Wu P, Wang C. Toxic effects of boscalid in adult zebrafish (Danio rerio) on carbohydrate and lipid metabolism. Environ Pollut. 2019;247:775–82. Epub 2019/02/06. S0269-7491(18)34233-7 [pii] doi: 10.1016/j.envpol.2019.01.054 30721868.

41. Qian L, Qi S, Cao F, Zhang J, Li C, Song M, et al. Effects of penthiopyrad on the development and behaviour of zebrafish in early-life stages. Chemosphere. 2019;214:184–94. Epub 2018/09/29. S0045-6535(18)31773-9 [pii] doi: 10.1016/j.chemosphere.2018.09.117 30265925.

42. Wu S, Lei L, Liu M, Song Y, Lu S, Li D, et al. Single and mixture toxicity of strobilurin and SDHI fungicides to Xenopus tropicalis embryos. Ecotoxicol Environ Saf. 2018;153:8–15. Epub 2018/02/07. S0147-6513(18)30055-1 [pii] doi: 10.1016/j.ecoenv.2018.01.045 29407742.

43. Simon-Delso N, San Martin G, Bruneau E, Hautier L. Time-to-death approach to reveal chronic and cumulative toxicity of a fungicide for honeybees not revealed with the standard ten-day test. Sci Rep. 2018;8(1):7241. Epub 2018/05/10. doi: 10.1038/s41598-018-24746-9 [pii]. 29739960.

44. Yamashita M, Fraaije B. Non-target site SDHI resistance is present as standing genetic variation in field populations of Zymoseptoria tritici. Pest Manag Sci. 2018;74(3):672–81. Epub 2017/10/13. doi: 10.1002/ps.4761 29024365.

45. Morais R, Gregoire M, Jeannotte L, Gravel D. Chick embryo cells rendered respiration-deficient by chloramphenicol and ethidium bromide are auxotrophic for pyrimidines. Biochem Biophys Res Commun. 1980;94(1):71–7. Epub 1980/05/14. S0006-291X(80)80189-6 [pii]. doi: 10.1016/s0006-291x(80)80189-6 6248067.

46. Gérard B, Bourgeron T, Chrétien D, Rotig A, Munnich A, Rustin P. Uridine preserves the expression of respiratory enzyme deficiencies in cultured fibroblasts. Eur J Pediatr. 1993;152(3):270. doi: 10.1007/bf01956163 8383055.

47. Favier J, Brière JJ, Strompf L, Amar L, Filali M, Jeunemaitre X, et al. Hereditary Paraganglioma/Pheochromocytoma and Inherited Succinate Dehydrogenase Deficiency. Horm Res. 2005;63(4):171–9. doi: 10.1159/000084685 15795514.

48. Boikos SA, Xekouki P, Fumagalli E, Faucz FR, Raygada M, Szarek E, et al. Carney triad can be (rarely) associated with germline succinate dehydrogenase defects. Eur J Hum Genet. 2016;24(4):569–73. Epub 2015/07/16. ejhg2015142 [pii] doi: 10.1038/ejhg.2015.142 26173966.

49. Miettinen M, Lasota J. Succinate dehydrogenase deficient gastrointestinal stromal tumors (GISTs)—a review. Int J Biochem Cell Biol. 2014;53:514–9. Epub 2014/06/03. S1357-2725(14)00191-5 [pii] doi: 10.1016/j.biocel.2014.05.033 24886695.

50. Dubard Gault M, Mandelker D, DeLair D, Stewart CR, Kemel Y, Sheehan MR, et al. Germline SDHA mutations in children and adults with cancer. Cold Spring Harb Mol Case Stud. 2018;4(4). Epub 2018/08/03. mcs.a002584 [pii] doi: 10.1101/mcs.a002584 30068732.

51. Rotig A, de Lonlay P, Chrétien D, Foury F, Koenig M, Sidi D, et al. Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat Genet. 1997;17(2):215–7. doi: 10.1038/ng1097-215 9326946.

52. Dudek J, Cheng IF, Chowdhury A, Wozny K, Balleininger M, Reinhold R, et al. Cardiac-specific succinate dehydrogenase deficiency in Barth syndrome. EMBO Mol Med. 2016;8(2):139–54. Epub 2015/12/25. emmm.201505644 [pii] doi: 10.15252/emmm.201505644 26697888.

53. Ardissone A, Invernizzi F, Nasca A, Moroni I, Farina L, Ghezzi D. Mitochondrial leukoencephalopathy and complex II deficiency associated with a recessive SDHB mutation with reduced penetrance. Mol Genet Metab Rep. 2015;5:51–4. Epub 2016/03/01. doi: 10.1016/j.ymgmr.2015.10.006 S2214-4269(15)30041-0 [pii]. 26925370.

54. Helman G, Caldovic L, Whitehead MT, Simons C, Brockmann K, Edvardson S, et al. Magnetic resonance imaging spectrum of succinate dehydrogenase-related infantile leukoencephalopathy. Ann Neurol. 2016;79(3):379–86. Epub 2015/12/09. doi: 10.1002/ana.24572 26642834.

55. Ishiyama A, Sakai C, Matsushima Y, Noguchi S, Mitsuhashi S, Endo Y, et al. IBA57 mutations abrogate iron-sulfur cluster assembly leading to cavitating leukoencephalopathy. Neurol Genet. 2017;3(5):e184. Epub 2017/09/16. doi: 10.1212/NXG.0000000000000184 NG2017005421 [pii]. 28913435.

56. Tomar R, Mishra AK, Mohanty NK, Jain AK. Altered expression of succinic dehydrogenase in asthenozoospermia infertile male. Am J Reprod Immunol. 2012;68(6):486–90. Epub 2012/09/19. doi: 10.1111/aji.12023 22985091.

57. Rodrigues Ade S, Kiyomoto BH, Oliveira AS, Gabbai AA, Schmidt B, Tengan CH. Progressive myopathy with a combined respiratory chain defect including Complex II. J Neurol Sci. 2008;264(1–2):182–6. Epub 2007/09/14. S0022-510X(07)00526-6 [pii] doi: 10.1016/j.jns.2007.08.002 17850823.

58. Micheletti MV, Lavoratti G, Gasperini S, Donati MA, Pela I. Hemolytic uremic syndrome and rhabdomyolysis in a patient with succinate coenzyme Q reductase (complex II) deficiency. Clin Nephrol. 2011;76(1):68–73. Epub 2011/07/05. 8753 [pii]. doi: 10.5414/cn106681 21722608.

Článek vyšel v časopise


2019 Číslo 11