Metabolomic response of Euglena gracilis and its bleached mutant strain to light

Autoři: Qing Shao aff001;  Lang Hu aff002;  Huan Qin aff001;  Yerong Liu aff001;  Xing Tang aff001;  Anping Lei aff001;  Jiangxin Wang aff001
Působiště autorů: Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen Uni aff001;  Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen Uni aff001;  College of Life Sciences and Technology, Hubei Engineering University, Xiaogan, China aff002
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224926


Euglena, a new superfood on the market, is a nutrient-rich, green single-celled microorganism that features the characteristics of both plant and animal. When cultivated under different conditions, Euglena produces different bioactive nutrients. Interestingly, Euglena is the only known microorganism whose chloroplasts are easy to lose under stress and become permanently bleached. We applied gas chromatography-mass spectrometry (GC-MS) to determine the metabolomes of wild-type (WT) Euglena gracilis and its bleached mutant OflB2 under light stimulation. We found a significant metabolic difference between WT and OflB2 cells in response to light. An increase of membrane components (phospholipids and acylamides) was observed in WT, while a decrease of some stimulant metabolites was detected in OflB2. These metabolomic changes after light stimulation are of great significance to the development of Euglena chloroplasts and their communications with the nucleus.

Klíčová slova:

Drug metabolism – Gas chromatography-mass spectrometry – Chloroplasts – Light – Metabolites – Metabolomics – Protein metabolism – Membrane metabolism


1. Schwartzbach SD. Large-Scale Cultivation of Euglena. In: Biochemistry, Cell and Molecular Biology. Springer International Publishing AG; 2017. pp. 289–290.

2. Wang JX, Shi ZX, Xu XD. Residual plastids of bleached mutants of Euglena gracilis and their effects on the expression of nucleus-encoded genes. Prog Nat Sci. 2004; 3: 21–25.

3. Rast A, Heinz S, Nickelsen J. Biogenesis of thylakoid membranes. Biochim Biophys Acta. 2015; 1847(9): 821–830. doi: 10.1016/j.bbabio.2015.01.007 25615584.

4. Waters MT, Langdale JA. The making of a chloroplast. EMBO J. 2009; 28(19): 2861–2873. doi: 10.1038/emboj.2009.264 19745808.

5. Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013; 496(7443): 101–105. doi: 10.1038/nature12040 23535601.

6. Zhang ZH, Zhao YY, Cheng XL, Dai Z, Zhou C, Bai X, et al. General toxicity of Pinellia ternata (Thunb.) Berit. in rat: A metabonomic method for profiling of serum metabolic changes. J Ethnopharmacol. 2013; 149(1): 303–310. doi: 10.1016/j.jep.2013.06.039 23831079.

7. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu JD, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009; 457(7231): 910–914. doi: 10.1038/nature07762 19212411.

8. Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L. Metabolite profiling for plant functional genomics. Nat Biotechnol. 2000; 18(11): 1157–1161. doi: 10.1038/81137 11062433.

9. Fiehn O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics. 2001; 2(3): 155–168. doi: 10.1002/cfg.82 18628911.

10. Mashego MR, Rumbold K, Heijnen JJ, Vand amme E, Soetaert W, Heijnen JJ. Microbial metabolomics: past, present and future methodologies. Biotechnol Lett. 2007; 29(1): 1–16. doi: 10.1007/s10529-006-9218-0 17091378.

11. Ritter A, Dittami SM, Goulitquer S, Correa JA, Boyen C, Potin P, et al. Transcriptomic and metabolomic analysis of copper stress acclimation in Ectocarpus siliculosus highlights signaling and tolerance mechanisms in brown algae. BMC Plant Biol. 2014; 14: 116. doi: 10.1186/1471-2229-14-116 24885189.

12. Zhang W, Tan NG, Li SF. NMR-based metabolomics and LC-MS/MS quantification reveal metal-specific tolerance and redox homeostasis in Chlorella vulgaris. Mol BioSyst. 2014; 10(1): 149–160. doi: 10.1039/c3mb70425d 24226509.

13. Ito T, Sugimoto M, Toya Y, Ano Y, Kurano N, Soga T, et al. Time-resolved metabolomics of a novel trebouxiophycean alga using 13CO2 feeding. J Biosci Bioeng. 2013; 116(3): 408–415. doi: 10.1016/j.jbiosc.2013.03.019 23706992.

14. Buetow DE. Chloroplast Molecular Structure with Particular Reference to Thylakoids and Envelopes. In: The Biology of Euglena. Academic Press: New York; 1982. Vol. III, pp. 254–255.

15. Wang JX, Shi ZX, Xu XD. 2002. Chloroplast-less mutants of two species of Euglena. Acta Hydrobiologica Sinica, 26 (2):175–179.

16. Heizmann P, Doly J, Hussein Y, Nicolas P, Nigon V, Bernardi G. The chloroplast genome of bleached mutant of Euglena gracilis. Biochim Biophys Acta. 1981; 653(3): 412–415. doi: 10.1016/0005-2787(81)90197-0 6788086.

17. Zeng M, Hao WL, Zou YD, Shi ML, Jiang YG, Xiao P, et al. Fatty acid and metabolomic profiling approaches differentiate heterotrophic and mixotrophic culture conditions in a microalgal food supplement 'Euglena'. BMC Biotechnol. 2016; 16(1): 49. doi: 10.1186/s12896-016-0279-4 27255274.

18. Wang Y, Shi M, Niu X, Zhang X, Gao L, Chen L, et al. Metabolomic basis of laboratory evolution of butanol tolerance in photosynthetic Synechocystis sp. PCC 6803. Microb Cell Fact. 2014; 13, 151. doi: 10.1186/s12934-014-0151-y 25366096.

19. Ogbonna JC, Tomiyama S, Tanaka H. Heterotrophic cultivation of Euglena gracilis Z for efficient production of α-tocopherol. J Appl Phycol. 1998; 10(1): 67–74.

20. Goodacre R, Broadhurst D, Smilde AK, Kristal BS, Baker JD, Beger R, et al. Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics. 2007; 3: 231–241. doi: 10.1007/s11306-007-0081-3

21. Bovarnick JG, Chang SW, Schiff JA, Schwartzbach SD. Events surrounding the early development of Euglena chloroplasts: cellular origins of chloroplast enzymes in Euglena. J Gen Microbiol. 1974; 83: 63–71. doi: 10.1099/00221287-83-1-63 4213097.

22. Freyssinet G, Eichholz RL, Buetow DE. Kinetics of accumulation of ribulose-1,5-bisphosphate carboxylase during greening in Euglena gracilis. Plant Physiol. 1984; 75(3): 850–857. doi: 10.1104/pp.75.3.850 16663716.

23. Pineau B. Biosynthesis of ribulose-1.5-bisphosphate carboxylase in greening cells of Euglena gracilis: The accumulation of ribulose-1.5-bisphosphate carboxylase and of its subunits. Planta. 1982; 156(2): 117–128. doi: 10.1007/BF00395426 24272307.

24. Schantz R, Schantz M-L, Duranton H. Changes in amino acid and peptide composition of Euglena gracilis cells during chloroplast development. Plant Sci Lett. 1975; 5: 313–324.

25. Beale SI, Foley T, Dzelzkalns V. δ-Aminolevulinic acid synthase from Euglena gracilis. Proc Natl Acad Sci USA. 1981; 78(3): 1666–1669. doi: 10.1073/pnas.78.3.1666 6940180.

26. Foley T, Dzelzkalns V, Beale SI. δ-aminolevulinic acid synthase of Euglena gracilis: Regulation of activity. Plant Physiol. 1982; 70(1): 219–226. doi: 10.1104/pp.70.1.219 16662450.

27. Eberly SL, Spremulli GH, Spremulli LL. Light induction of the Euglena chloroplast protein synthesis elongation factors: relative effectiveness of different wavelength ranges. Arch Biochem Biophys. 1986; 245(2): 338–347. doi: 10.1016/0003-9861(86)90224-9 3082283.

28. Laval-Martin D, Farineau J, Pineau B, Calvayrac R. Evolution of enzymes involved in carbon metabolism (phosphoenolpyruvate and ribulose-bisphosphate carboxylases, phosphoenolpyruvate carboxykinase) during the light-induced greening of Euglena gracilis strains Z and ZR. Planta. 1981; 151(2): 157–167. doi: 10.1007/BF00387818 24301724.

29. Pönsgen-Schmidt E, Schneider T, Hammer U, Betz A. Comparison of phosphoenolpyruvate-Carboxykinase from autotrophically and heterotrophically grown Euglena and its role during dark anaerobiosis. Plant physiol. 1988; 86(2): 457–462. doi: 10.1104/pp.86.2.457 16665930.

30. Monroy AF, McCarthy SA, Schwartzbach SD. Evidence for translational regulation of chloroplast and mitochondrial biogenesis in Euglena. Plant Sci. 1987; 51: 61–76.

31. Monroy AF, Gomez-Silva B, Schwartzbach SD, Schiff JA. Photocontrol of chloroplast and mitochondrial polypeptide levels in Euglena. Plant Physiol. 1986; 80(3): 618–622. doi: 10.1104/pp.80.3.618 16664673.

32. Dockerty A, Merrett MJ. Isolation and enzymic characterization of Euglena proplastids. Plant Physiol. 1979; 63(3): 468–473. doi: 10.1104/pp.63.3.468 16660749.

33. Miyatake K, Ito T, Kitaoka S. Subcellular location and some properties of phosphoenol pyruvates carboxykinase (PEPCK) in Euglena gracilis. Agri Biol Chem. 1984; 48: 2139–2141.

34. Karn RC, Hudock GA. A photorepressible isozyme of malic enzyme in Euglena gracilis strain Z. J Protozool. 1973; 20(2): 316–320. doi: 10.1111/j.1550-7408.1973.tb00886.x 4145408.

35. Pribil M, Labs M, Leister D. Structure and dynamics of thylakoids in land plants. J Exp Bot. 2014; 65(8): 1955–1972. doi: 10.1093/jxb/eru090 24622954.

36. Tanoue R, Kobayashi M, Katayama K, Nagata N, Wada H. Phosphatidylglycerol biosynthesis is required for the development of embryos and normal membrane structures of chloroplasts and mitochondria in Arabidopsis. FEBS Lett. 2014; 588(9): 1680–1685. doi: 10.1016/j.febslet.2014.03.010 24632290.

37. Kobayashi K, Narise T, Sonoike K, Hashimoto H, Sato N, Kondo M, et al. Role of galactolipid biosynthesis in coordinated development of photosynthetic complexes and thylakoid membranes during chloroplast biogenesis in Arabidopsis. Plant J. 2013; 73(2): 250–261. doi: 10.1111/tpj.12028 22978702.

38. Kobayashi K, Wada H. Role of lipids in chloroplast biogenesis. Subcell Biochem. 2016; 86: 103–125. doi: 10.1007/978-3-319-25979-6_5 27023233.

39. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N. Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature. 2001; 411(6840): 909–917. doi: 10.1038/35082000 11418848.

40. Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W. Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol. 2009; 16(3): 334–342. doi: 10.1038/nsmb.1559 19219048.

Článek vyšel v časopise


2019 Číslo 11