#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Variation in hybridogenetic hybrid emergence between populations of water frogs from the Pelophylax esculentus complex


Autoři: Dmitrij Dedukh aff001;  Julia Litvinchuk aff001;  Anton Svinin aff002;  Spartak Litvinchuk aff003;  Juriy Rosanov aff003;  Alla Krasikova aff001
Působiště autorů: Saint-Petersburg State University, Saint-Petersburg, Russia aff001;  Mari State University, Mari El Republic, Russia aff002;  Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia aff003;  Department of Zoology and Physiology, Dagestan State University, Makhachkala, Russia aff004
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0224759

Souhrn

Many closely related species are capable of mating to produce hybrid offspring, which are usually sterile. Nevertheless, altering the gametogenesis of hybrid offspring can rescue hybrids from sterility by enabling asexual reproduction. Hybridogenesis is one of the most complicated asexual reproductive modes, and it includes drastic genome reorganization only in the germline; this is achieved through elimination of one parental genome and duplication of the remaining one to restore diploid chromosomal set and overcome blocks in meiotic progression. We investigated a model of hybridogenesis, namely, water frogs from the Pelophylax esculentus complex, for the emergence of asexual reproduction. Further, we assessed the impact of its asexual reproduction on the maintenance of interspecies hybrids from two populations on the western edge of the P. esculentus range, in which hybrids coexist with either both parental species or with only one parental species. After analysing tadpole karyotypes, we conclude that in both studied populations, the majority of diploid hybrid males produced haploid gametes with the P. ridibundus genome after elimination of the P. lessonae genome. Hybrid females exhibited problems with genome elimination and duplication; they usually produced oocytes with univalents, but there were observations of individual oocytes with 13 bivalents and even 26 bivalents. In some hybrid tadpoles, especially F1 crosses, we observed failed germ cell development, while in tadpoles from backcrosses, germ cells were normally distributed and contained micronuclei. By identifying chromosomes present in micronuclei, we estimated that the majority of tadpoles from all crosses were able to selectively eliminate the P. lessonae chromosomes. According to our results, hybridogenesis in hybrids can appear both from crosses of parental species and crosses between sexual species with hybrid individuals. The ability to eliminate a genome and perform endoreplication to ensure gamete formation differed between male and female hybrids from the studied populations. Some diploid hybrid females can rarely produce not only haploid gametes but also diploid gametes, which is a crucial step in the formation of triploid hybrids.

Klíčová slova:

Amphibian genomics – Frogs – Gametogenesis – Germ cells – Gonads – Micronuclei – Oocytes – Tadpoles


Zdroje

1. Coyne JA, Orr HA. The evolutionary genetics of speciation. Philos Trans R Soc Lond B Biol Sci. 1998;353(1366):287–305. doi: 10.1098/rstb.1998.0210 9533126

2. Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N, et al. Hybridization and speciation. J Evol Biol. 2013;26(2):229–46. doi: 10.1111/j.1420-9101.2012.02599.x 23323997

3. Mallet J. Hybrid speciation. Nature. 2007;446(7133):279–83. doi: 10.1038/nature05706 17361174

4. Schön I, Martens K, Dijk P van, editors. Lost Sex: The Evolutionary Biology of Parthenogenesis. Springer Netherlands; 2009.

5. Neaves WB, Baumann P. Unisexual reproduction among vertebrates. Trends Genet. 2011;27(3):81–8. doi: 10.1016/j.tig.2010.12.002 21334090

6. Stenberg P, Saura A. Meiosis and its deviations in polyploid animals. Cytogenet Genome Res. 2013;140(2–4):185–203. doi: 10.1159/000351731 23796636

7. Dawley RM, Bogart JP. Evolution and Ecology of Unisexual Vertebrates. University of the State of New York, State Education Department, New York State Museum; 1989. 320 p.

8. Tunner HG. Die klonale Struktur einer Wasserfroschpopulation1. J Zool Syst Evol Res. 1974;12(1):309–14.

9. Berger L. Morphology of the F1 Generation of various crosses within Rana esculenta-complex. Acta Zool Cracoviensia. 1968;13:301–24.

10. Tunner HG, Heppich S. Premeiotic genome exclusion during oogenesis in the common edible frog, Rana esculenta. Naturwissenschaften. 1981;68(4):207–8. doi: 10.1007/bf01047207 6974310

11. Graf J-D, Müller WP. Experimental gynogenesis provides evidence of hybridogenetic reproduction in the Rana esculenta complex. Experientia. 1979;35(12):1574–6. doi: 10.1007/bf01953200 316396

12. Christiansen DG, Reyer H-U. From clonal to sexual hybrids: genetic recombination via triploids in all-hybrid populations of water frogs. Evolution. 2009;63(7):1754–68. doi: 10.1111/j.1558-5646.2009.00673.x 19245393

13. Christiansen DG, Fog K, Pedersen BV, Boomsma JJ. Reproduction and hybrid load in all-hybrid populations of Rana esculenta water frogs in Denmark. Evolution. 2005;59(6):1348–61. 16050110

14. Dedukh D, Litvinchuk S, Rosanov J, Shabanov D, Krasikova A. Mutual maintenance of di- and triploid Pelophylax esculentus hybrids in R-E systems: results from artificial crossings experiments. BMC Evol Biol. 2017;17.

15. Graf J-D, Polls Pelaz M. Evolutionary genetics of the Rana esculenta complex. In: Evolution and ecology of unisexual vertebrates. New York State Museum Bulletin 466. p. 289–302.

16. Plötner J. Die westpaläarktischen Wasserfrösche, von Märtyrern der Wissenschaft zur biologischen Sensation. Bielefeld: Laurenti-Verlag; 2005. 160 p.

17. Lada GA, Borkin LJ, Vinogradov AE. Distribution, population systems and reproductive behavior of green frogs (hybridogenetic Rana esculentus complex) in the central chernozem territory of Russia. Rus J Herpetol. 1995;2(1):46–57.

18. Borkin L, Darevsky I. Reticulate (hybridogenus) speciation in vertebrata. J Obsh Biol. 1980;485–506.

19. Alves MJ, Coelho MM, Collares-Pereira MJ. Evolution in action through hybridisation and polyploidy in an Iberian freshwater fish: a genetic review. Genetica. 2001;111(1–3):375–85. doi: 10.1023/a:1013783029921 11841181

20. Stöck M, Steinlein C, Lamatsch DK, Schartl M, Schmid M. Multiple origins of tetraploid taxa in the Eurasian Bufo viridis subgroup. Genetica. 2005;124(2):255–72.

21. Litvinchuk S, Borkin L, Skorinov D, Pasynkova R, Rosanov Y. Natural polyploidy in amphibians. Biol Communication. 2016;3:77–86.

22. Fayzulin AI, Zamaletdinov RI, Litvinchuk S, Rozanov JM, Borkin LJ, Ermakov OA, et al. Species composition and distributional peculiarities of green frogs (Pelophylax esculentus complex) in Protected Areas of the Middle Volga Region (Russia). Nature Conserv Res. 2018;3(1):1–16.

23. Borkin LJ, Litvinchuk SN, Mannapova EI, Pestov MV, Rosanov JM. The distribution of green frogs (Rana esculenta complex) in Nizhniy Novgorod Province, Central European Russia. Rus J Herpetol. 2002;9(3):195–208.

24. Borkin LJ, Vinogradov AE, Rosanov JM, Litvinchuk S. Green frogs of Eastern Europe: taxonomy, distribution, population compositions, and genome size variation. Third International Symposium on «Genetics, Systematics and Ecology of Western Palearctic Water frogs». 1999;(Berlin):7.

25. Svinin AO, Litvinchuk SN, Borkin LJ, Rozanov YM. Distribution and population system types of green frogs (Pelophylax Fitzinger, 1843) in Mari El Republic. Current Studies Herpetol. 2013;13(3/4):137–47.

26. Svinin AO, Ivanov AYu, Zaks MM, Litvinchuk SN, Borkin LJ, Rozanov YM, et al. Distribution of the «eastern» and «western» forms of the marsh frog, Pelophylax ridibundus, and their participation in the origin of hemiclonal hybrids, P. esculentus in Mari El Republic. Current Studies Herpetol. 2015;15(3/4):120–9.

27. Borkin LJ, Litvinchuk S, Mannapova EI, Pestov MV, Rozanov YM. The distribution of green frogs (Rana esculenta complex) in Nizhniy Novgorod Province, Central European Russia. Rus J Herpetol. 2002;9(3):195–208.

28. Pruvost NBM, Hoffmann A, Reyer H-U. Gamete production patterns, ploidy, and population genetics reveal evolutionary significant units in hybrid water frogs (Pelophylax esculentus). Ecol Evol. 2013;3(9):2933–46. doi: 10.1002/ece3.687 24101984

29. Berger L. Viability, sex and morphology of F2 generation within forms of Rana esculenta complex. Zool Pol. 1971;21(4):345–93.

30. Bucci S, Ragghianti M, Mancino G, Berger L, Hotz H, Uzzell T. Lampbrush and mitotic chromosomes of the hemiclonally reproducing hybrid Rana esculenta and its parental species. J Exp Zool. 1990;255(1):37–56. doi: 10.1002/jez.1402550107 2391468

31. Günther R. Europäische Wasserfrösche (Anura, Ranidae) und biologisches Artkonzept. Mitteilungen aus dem Museum für Naturkunde in Berlin. Zoologisches Museum und Institut für Spezielle Zoologie (Berlin). 1991; 67(1):39–53.

32. Rybacki M, Berger L. Types of water frog populations (Rana esculenta complex) in Poland. Zoosyst Evol. 2001;77(1):51–7.

33. Ogielska M. Nucleus-like bodies in gonial cells of Rana esculenta [Amphibia, Anura] tadpoles—a putative way of chromosome elimination. Zool Pol. 1994;39:461–74.

34. Chmielewska M, Dedukh D, Haczkiewicz K, Rozenblut-Kościsty B, Kaźmierczak M, Kolenda K, et al. The programmed DNA elimination and formation of micronuclei in germ line cells of the natural hybridogenetic water frog Pelophylax esculentus. Sci Rep. 2018;8(1):7870. doi: 10.1038/s41598-018-26168-z 29777142

35. Kierzkowski P, Paśko Ł, Rybacki M, Socha M, Ogielska M. Genome dosage effect and hybrid morphology—the case of the hybridogenetic water frogs of the Pelophylax esculentus complex. Ann Zool Fenn. 2011;48(1):56–66.

36. Vinogradov AE, Borkin LJ, Günther R, Rosanov JM. Genome elimination in diploid and triploid Rana esculenta males: cytological evidence from DNA flow cytometry. Genome. 1990;33(5):619–27. doi: 10.1139/g90-092 2262136

37. Borkin LJ, Korshunov AV, Lada GA, Litvinchuk SN, Rosanov JM, Shabanov DA, et al. Mass occurrence of polyploid green frogs (Rana esculenta complex) in eastern Ukraine. Russ J Herpetol. 2004;11:194–213.

38. Dedukh D, Mazepa G, Shabanov D, Rosanov J, Litvinchuk S, Borkin L, et al. Cytological maps of lampbrush chromosomes of European water frogs (Pelophylax esculentus complex) from the Eastern Ukraine. BMC Genet. 2013;14:26. doi: 10.1186/1471-2156-14-26 23590698

39. Gosner KL. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica. 1960;16(3):183–90.

40. Ragghianti M, Guerrini F, Bucci S, Mancino G, Hotz H, Uzzell T, et al. Molecular characterization of a centromeric satellite DNA in the hemiclonal hybrid frog Rana esculenta and its parental species. Chromosome Res. 1995;3(8):497–506. 8581303

41. Dumont JN. Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J Morphol. 1972;136(2):153–79. doi: 10.1002/jmor.1051360203 4109871

42. Ragghianti M, Bucci S, Marracci S, Casola C, Mancino G, Hotz H, et al. Gametogenesis of intergroup hybrids of hemiclonal frogs. Genet Res. 2007;89(1):39–45. doi: 10.1017/S0016672307008610 17517158

43. Ogielska M, Jurgowiak L. Exogastrulation in the progeny of water frog, Rana esculenta L. [Amphibia, Anura]. Zool Pol. 1994;39:475–84.

44. Guex G-D. Developmental disturbances in Rana esculenta tadpoles and metamorphs. Mitt Mus Nat.kd Bcrl, Zool Reihe. 2001;77(1):79–86.

45. Dedukh D, Litvinchuk S, Rosanov J, Mazepa G, Saifitdinova A, Shabanov D, et al. Optional endoreplication and selective elimination of parental genomes during oogenesis in diploid and triploid hybrid european water frogs. PLoS ONE. 2015;10(4):e0123304. doi: 10.1371/journal.pone.0123304 25894314

46. Biriuk OV, Shabanov DA, Korshunov AV, Borkin LJ, Lada GA, Pasynkova RA, et al. Gamete production patterns and mating systems in water frogs of the hybridogenetic Pelophylax esculentus complex in north-eastern Ukraine. J Zool Syst Evol Res. 2016;54(3):215–25.

47. Janko K, Pačes J, Wilkinson-Herbots H, Costa RJ, Roslein J, Drozd P, et al. Hybrid asexuality as a primary postzygotic barrier between nascent species: On the interconnection between asexuality, hybridization and speciation. Mol Ecol. 2018;27(1):248–63. doi: 10.1111/mec.14377 28987005

48. Alves MJ, Coelho MM, Collares-Pereira MJ. Diversity in the reproductive modes of females of the Rutilus alburnoides complex (Teleostei, Cyprinidae): a way to avoid the genetic constraints of uniparentalism. Mol Biol Evol. 1998;15(10):1233–1233.

49. Crespo-López ME, Duarte T, Dowling T, Coelho MM. Modes of reproduction of the hybridogenetic fish Squalius alburnoides in the Tejo and Guadiana rivers: an approach with microsatellites. Zoology (Jena). 2006;109(4):277–86.

50. Morishima K, Nakamura-Shiokawa Y, Bando E, Li Y-J, Boroń A, Khan MMR, et al. Cryptic clonal lineages and genetic diversity in the loach Misgurnus anguillicaudatus (Teleostei: Cobitidae) inferred from nuclear and mitochondrial DNA analyses. Genetica. 2008;132(2):159–71. doi: 10.1007/s10709-007-9158-1 17578669

51. Hoffmann A, Plötner J, Pruvost NBM, Christiansen DG, Röthlisberger S, Choleva L, et al. Genetic diversity and distribution patterns of diploid and polyploid hybrid water frog populations (Pelophylax esculentus complex) across Europe. Mol Ecol. 2015;24(17):4371–91. doi: 10.1111/mec.13325 26308154

52. Hotz H, Mancino G, Bucciinnocenti S, Ragghianti M, Berger L, Uzzell T. Rana ridibunda varies geographically in inducing clonal gametogenesis in interspecies hybrids. J Exp Zool. 1985;236(2):199–210.

53. Rybacki M, Berger L. Types of water frog populations (Rana esculenta complex) in Poland. Mitt Mus Nat kd Berl, Zool Reihe. 2001;77:51–57.

54. Cunha C, Doadrio I, Abrantes J, Coelho MM. The evolutionary history of the allopolyploid Squalius alburnoides (Cyprinidae) complex in the northern Iberian Peninsula. Heredity. 2011;106(1):100–12. doi: 10.1038/hdy.2010.70 20531449

55. Mable BK, Alexandrou MA, Taylor MI. Genome duplication in amphibians and fish: an extended synthesis: Polyploidy in amphibians and fish. J Zool. 2011;284:151–82.

56. Berger L, Roguski H. Ploidy of progeny from different egg size classes of Rana esculenta L. Folia Biol (Krakow). 1978;26(4):231–48.

57. Christiansen DG, Jakob C, Arioli M, Roethlisberger S, Reyer H-U. Coexistence of diploid and triploid hybrid water frogs: population differences persist in the apparent absence of differential survival. BMC Ecology. 2010;10(1):14.

58. Arioli M. Reproductive patterns and population genetics in pure hybridogenetic water frog populations of Rana esculenta. University of Zurich; 2007.


Článek vyšel v časopise

PLOS One


2019 Číslo 11
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

KOST
Koncepce osteologické péče pro gynekology a praktické lékaře
nový kurz
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Svět praktické medicíny 5/2023 (znalostní test z časopisu)

Imunopatologie? … a co my s tím???
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#