Avermectin induces the oxidative stress, genotoxicity, and immunological responses in the Chinese Mitten Crab, Eriocheir sinensis

Autoři: Yi Huang aff001;  Yuhang Hong aff001;  Zhiqiu Huang aff001;  Jilei Zhang aff001;  Qiang Huang aff001
Působiště autorů: Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang, Sichuan Province, China aff001
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225171


Avermectin is commonly used in aquaculture systems for pest control in recent decades in China. However, no information is provided for the toxic effect to the important commercial species, Chinese mitten crab, Eriocheir sinensis. To investigate the aquatic toxicity of avermectin, an acute toxic test was performed in this study. The results showed that the 48 h- and 96 h- LC50 were 1.663 and 0.954 mg/L, respectively. For further research, crabs were exposed to sublethal concentrations of 0.03, 0.06, 0.12, 0.24 and 0.48 mg/L. Levels of antioxidants, including superoxide dismutase (SOD), catalase (CAT) and total antioxidant capacity (T-AOC) were significantly (P<0.05) decreased with dose- and time- dependent responses, meanwhile the oxidative products including malondialdehyde (MDA), hydrogen peroxide (H2O2) and protein carbonyl in serum increased significantly (P<0.05) at concentrations of 0.24 and 0.48 mg/L throughout the experiment. A significant (P<0.05) increase of intracellular ROS and decrease of phagocytic activity was observed in high concentration groups, with dose- and time- dependent manners during the exposure. In addition, serious genetic damage was detected, for the significant increase (P<0.05) of both comet ratio and %DNA in tail at each concentration, and micronucleus (MN) frequency at concentrations of 0.12, 0.24 and 0.48 mg/L at 96 h. These results indicated that sublethal concentration exposure of avermectin had a prominent toxic effect on E. sinensis based on the oxidative stress induced by generated ROS, immunological activity inhibition and genotoxicity.

Klíčová slova:

Analysis of variance – Antioxidants – Crabs – DNA damage – Fluorescence microscopy – Oxidative stress – Pesticides – Superoxide dismutase


1. Burg RW, Miller BM, Baker EE, Birnbaum J, Currie SA, Hartman R, et al. Avermectins, New Family of Potent Anthelmintic Agents: Producing Organism and Fermentation. Antimicrob Agents Chemother. 1979; 15: 361–367. doi: 10.1128/aac.15.3.361 464561

2. Novelli A, Vieira BH, Cordeiro D, Cappelini LT, Vieira EM, Espindola EL. Lethal effects of abamectin on the aquatic organisms Daphnia similis, Chironomus xanthus and Danio rerio. Chemosphere. 2012; 86: 36–40. doi: 10.1016/j.chemosphere.2011.08.047 21955349

3. Omura S. Ivermectin: 25 years and still going strong. Int J Antimicrob Agents. 2008; 31: 91–98. doi: 10.1016/j.ijantimicag.2007.08.023 18037274

4. Duce Ian R., Bhandal Narotam S., Scott Roderick H., Norris TM Effects of ivermectin on γ-aminobutyric acid and glutamate-gated chloride conductance in arthropod skeletal muscle. In: Molecular Action of Insecticides on Ion Channels, 1995. p 251–263

5. Chen J, Liu M, Zhang L. [Avermectin, from winning the Nobel Prize to "innovation in China"]. Acta Microbiologica Sinica. 2016; 56: 543. 27382795

6. Bai SH, Ogbourne S. Eco-toxicological effects of the avermectin family with a focus on abamectin and ivermectin. Chemosphere. 2016; 154: 204–214. doi: 10.1016/j.chemosphere.2016.03.113 27058912

7. Wislocki PG, Grosso LS, Dybas RA (1989) Environmental Aspects of Abamectin Use in Crop Protection. Springer New York,

8. Tišler T, Eržen NK. Abamectin in the aquatic environment. Ecotoxicology. 2006; 15: 495–502. doi: 10.1007/s10646-006-0085-1 16741677

9. Novelli A, Vieira BH, Braun AS, Mendes LB, Daam MA, Espindola EL. Impact of runoff water from an experimental agricultural field applied with Vertimec(R) 18EC (abamectin) on the survival, growth and gill morphology of zebrafish juveniles. Chemosphere. 2016; 144: 1408–1414. doi: 10.1016/j.chemosphere.2015.10.004 26492427

10. BFMA (2017) China Fishery Statistical Yearbook. China Agriculture Press, BeiJing

11. Davies IM, Gillibrand PA, Mchenery JG, Rae GH. Environmental risk of ivermectin to sediment dwelling organisms. Aquaculture. 1998; 163: 29–46.

12. Lushchak VI. Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology. 2011; 101: 13–30. doi: 10.1016/j.aquatox.2010.10.006 21074869

13. Alak G, Yeltekin AC, Tas IH, Ucar A, Parlak V, Topal A, et al. Investigation of 8-OHdG, CYP1A, HSP70 and transcriptional analyses of antioxidant defence system in liver tissues of rainbow trout exposed to eprinomectin. Fish Shellfish Immunol. 2017; 65: 136–144. doi: 10.1016/j.fsi.2017.04.004 28400213

14. Amin KA, Hashem KS. Deltamethrin-induced oxidative stress and biochemical changes in tissues and blood of catfish (Clarias gariepinus): antioxidant defense and role of alpha-tocopherol. BMC Vet Res. 2012; 8: 45. doi: 10.1186/1746-6148-8-45 22537979

15. Zhang Y, Wu J, Xu W, Gao J, Cao H, Yang M, et al. Cytotoxic effects of Avermectin on human HepG2 cells in vitro bioassays. Environ Pollut. 2017; 220: 1127–1137. doi: 10.1016/j.envpol.2016.11.022 27852506

16. Shen W, Zhao X, Wang Q, Niu B, Liu Y, He L, et al. Genotoxicity evaluation of low doses of avermectin to hemocytes of silkworm (Bombyx mori) and response of gene expression to DNA damage. Pesticide Biochemistry and Physiology. 2011; 101: 159–164.

17. Mayer FL. Acute toxicity handbook of chemicals to estuarine organisms. 1987:

18. Johnson WW, Finley MT (2013) Handbook of acute toxicity of chemicals to fish and aquatic invertebrates. Summaries of toxicity tests conducted at Columbia National Fisheries Research Laboratory. 1965–78.

19. Pei CM, Li BT, Xu YM. Determination and dynamics of avermectin residue in ecosystem of paddy field. Acta Agriculturae Universitatis Jiangxiensis. 2009: 659–665.

20. Zhang W, Guihong FU, Yuan W, Jia Z, Fang W, Shen J, et al. Accumulation and elimination of avermectin in a simulated aquaculture ecosystem. Journal of Fishery Sciences of China. 2016:

21. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Analytical Biochemistry. 1996; 239: 70–76. doi: 10.1006/abio.1996.0292 8660627

22. Lowry OH. Protein measurements with the Folin phenol reagent. Journal of Biological Chemistry. 1951; 193: 265. 14907713

23. Hong Y, Yang X, Yan G, Huang Y, Zuo F, Shen Y, et al. Effects of glyphosate on immune responses and haemocyte DNA damage of Chinese mitten crab, Eriocheir sinensis. Fish Shellfish Immunol. 2017; 71: 19–27. doi: 10.1016/j.fsi.2017.09.062 28962885

24. Barka S, Ouanes Z, Gharbi A, Gdara I, Mouelhi S, Hamza-Chaffai A. Monitoring genotoxicity in freshwater microcrustaceans: A new application of the micronucleus assay. Mutat Res Genet Toxicol Environ Mutagen. 2016; 803–804: 27–33. doi: 10.1016/j.mrgentox.2016.05.002 27265377

25. Liu JF, Hui-Ming WU, Xin-Sheng MA, Ding W. Degradation of two different formulations of Abamectin in paddy soil and paddy water. Acta Agriculturae Zhejiangensis. 2011; 23: 0–770.

26. Alm S, Vieira BH, Reghini MV, Moreira RA, Freitas EC, Elg E, et al. Single and mixture toxicity of abamectin and difenoconazole to adult zebrafish (Danio rerio). Chemosphere. 2017; 188: 582–587. doi: 10.1016/j.chemosphere.2017.09.027 28917210

27. Ying JJ (2011) The toxicity of abamectin effects on Macrobrachium nipponense and the pharmacokinetics in Macrobrachium nipponense Shanghai Ocean University, Shanghai

28. Simon LM, Fatrai Z, Jonas DE, Matkovics B. Study of Peroxide Metabolism Enzymes During the Development of Phaseolus vulgaris 1). Biochemie Und Physiologie Der Pflanzen. 1974; 166: 387–392.

29. Jiazhang C, Guang Y, Xiaoyan M, Fengqin N, Gengdong H. Effect of Low Concentration of Avermectins on Superoxide Dismutase (SOD)Activities in Common Carp. Asian Journal of Ecotoxicology. 2009; 4: 823–828.

30. Ma J, Zhou C, Li Y, Li X. Biochemical responses to the toxicity of the biocide abamectin on the freshwater snail Physa acuta. Ecotoxicol Environ Saf. 2014; 101: 31–35. doi: 10.1016/j.ecoenv.2013.12.009 24507123

31. Tu HT, Silvestre F, Meulder BD, Thome JP, Phuong NT, Kestemont P. Combined effects of deltamethrin, temperature and salinity on oxidative stress biomarkers and acetylcholinesterase activity in the black tiger shrimp (Penaeus monodon). Chemosphere. 2012; 86: 83. doi: 10.1016/j.chemosphere.2011.09.022 22075054

32. Wang J, Wang J, Wang G, Zhu L, Wang J. DNA damage and oxidative stress induced by imidacloprid exposure in the earthworm Eisenia fetida. Chemosphere. 2016; 144: 510–517. doi: 10.1016/j.chemosphere.2015.09.004 26397468

33. Weifen L, Xiaoping Z, Wenhui S, Bin D, Quan L, Luoqin F, et al. Effects of Bacillus preparations on immunity and antioxidant activities in grass carp (Ctenopharyngodon idellus). Fish Physiology and Biochemistry. 2012; 38: 1585–1592. doi: 10.1007/s10695-012-9652-y 22585415

34. Liu C, Li M, Cao Y, Qu JP, Zhang ZW, Xu SW, et al. Effects of avermectin on immune function and oxidative stress in the pigeon spleen. Chem Biol Interact. 2014; 210: 43–50. doi: 10.1016/j.cbi.2013.12.015 24412236

35. Hong Y, Yang X, Huang Y, Yan G, Cheng Y. Oxidative stress and genotoxic effect of deltamethrin exposure on the Chinese mitten crab, Eriocheir sinensis. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2018; 212: 25–33.

36. Johansson MW, Keyser P, Sritunyalucksana K, Soderhall K. Crustacean haemocytes and haematopoiesis. Aquaculture. 2000; 191: 45–52.

37. Xian JA, Wang AL, Ye CX, Chen XD, Wang WN. Phagocytic activity, respiratory burst, cytoplasmic free-Ca(2+) concentration and apoptotic cell ratio of haemocytes from the black tiger shrimp, Penaeus monodon under acute copper stress. Comparative Biochemistry & Physiology Part C. 2010; 152: 182–188.

38. Abd-Allah GA, El-Fayoumi RI, Smith MJ, Heckmann RA, O'Neill KL. A comparative evaluation of aflatoxin B 1 genotoxicity in fish models using the Comet assay. Mutation Research. 1999; 446: 181–188. doi: 10.1016/s1383-5718(99)00181-3 10635340

39. Deventer K. Detection of Genotoxic Effects on Cells of Liver and Gills of B. rerio by Means of Single Cell Gel Electrophoresis. Bulletin of Environmental Contamination & Toxicology. 1996; 56: 911.

40. Wilson JT, Pascoe PL, Parry JM, Dixon DR. Evaluation of the comet assay as a method for the detection of DNA damage in the cells of a marine invertebrate, Mytilus edulis L. (Mollusca: Pelecypoda). Mutation Research. 1998; 399: 87–95. doi: 10.1016/s0027-5107(97)00268-6 9635491

41. Shen WF, Zhao XP, Wang Q, Niu BL, Liu Y, He LH, et al. Genotoxicity evaluation of low doses of avermectin to hemocytes of silkworm (Bombyx mori) and response of gene expression to DNA damage. Pesticide Biochemistry & Physiology. 2011; 101: 159–164.

42. Tsuchimoto T, Matter BE. In vivo cytogenetic screening methods for mutagens, with special reference to the micronucleus test. Archives of toxicology. 1979; 42: 239–248. doi: 10.1007/bf00334837 160219

43. Cavalcante DG, Martinez CB, Sofia SH. Genotoxic effects of Roundup on the fish Prochilodus lineatus. Mutat Res. 2008; 655: 41–46. doi: 10.1016/j.mrgentox.2008.06.010 18638566

Článek vyšel v časopise


2019 Číslo 11