Relationship between pattern electroretinogram and optic disc morphology in glaucoma

Autoři: Soo Ji Jeon aff001;  Hae-Young Lopilly Park aff001;  Kyoung In Jung aff001;  Chan Kee Park aff001
Působiště autorů: Department of Ophthalmology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea aff001
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0220992



To evaluate the relationship between pattern electroretinogram (PERG) and optic disc morphology in glaucoma suspect and glaucoma.


Eighty-six eyes of glaucoma suspect and 145 eyes of manifest glaucoma subjects were included in this study. Average peripapillary retinal nerve fiber layer (RNFL) thickness was obtained with spectral-domain optical coherence tomography, and optic disc imaging was performed using the Heidelberg Retinal Tomograph (HRT). Visual function was evaluated with perimetry (SITA and frequency doubling technology) and PERG. Scatter plots and correlation coefficients were evaluated between visual function and RNFL thickness or optic disc structure.


Scatter plots of PERG and perimetry according to RNFL thickness change showed that PERG started to decrease earlier than did perimetry. The differences between linear and logarithmic R2 were largest for the scatter plot of SITA 24–2 (linear R2 = 0.415; logarithmic R2 = 0.443) and the smallest for P50 amplitude of PERG (linear R2 = 0.136, logarithmic R2 = 0.138). In glaucoma suspect, HRT parameters such as cup shape measure (CSM) and linear cup-disc ratio (CDR) had significant correlations with PERG amplitudes (P = 0.016 for P50 and 0.049 for N95 in CSM, P = 0.012 for P50 in CDR). However, in glaucoma patients, mean RNFL thickness was associated with PERG amplitude (P = 0.011 for P50 and 0.002 for N95).


PERG deterioration occurred earlier than did perimetry according to RNFL thickness decrease. PERG amplitudes were significantly correlated with disc morphology in glaucoma suspect. These results suggest that PERG can detect ganglion cell dysfunction before the cells die.

Klíčová slova:

Electrophysiology – Eyes – Ganglion cells – Glaucoma – Ophthalmology – Optic disc – Retinal ganglion cells – Tomography


1. Ventura LM, Sorokac N, De Los Santos R, Feuer WJ, Porciatti V. The relationship between retinal ganglion cell function and retinal nerve fiber thickness in early glaucoma. Invest Ophthalmol Vis Sci. 2006; 47:3904–3911. doi: 10.1167/iovs.06-0161 16936103

2. Medeiros FA, Zangwill LM, Bowd C, Mansouri K, Weinreb RN. The structure and function relationship in glaucoma: implications for detection of progression and measurement of rates of change. Invest Ophthalmol Vis Sci. 2012; 53:6939–6946. doi: 10.1167/iovs.12-10345 22893677

3. Jung KI, Park CK. Detection of Functional Change in Preperimetric and Perimetric Glaucoma Using 10–2 Matrix Perimetry. Am J Ophthalmol. 2017; 182:35–44. doi: 10.1016/j.ajo.2017.07.007 28734817

4. Rao HL, Januwada M, Hussain RS, Pillutla LN, Begum VU, Chaitanya A, et al. Comparing the Structure-Function Relationship at the Macula With Standard Automated Perimetry and Microperimetry. Invest Ophthalmol Vis Sci. 2015; 56:8063–8068. doi: 10.1167/iovs.15-17922 26720457

5. Jung Y, Park HL, Park YR, Park CK. Usefulness of 10–2 Matrix Frequency Doubling Technology Perimetry for Detecting Central Visual Field Defects in Preperimetric Glaucoma Patients. Sci Rep. 2017; 7:14622. doi: 10.1038/s41598-017-15329-1 29116211

6. Jung Y, Park HY, Jeong HJ, Choi SY, Park CK. The Ability of 10–2 Short-Wavelength Perimetry in Detecting Functional Loss of the Macular Area in Preperimetric Glaucoma Patients. Invest Ophthalmol Vis Sci. 2015; 56:7708–7714. doi: 10.1167/iovs.15-17819 26641548

7. Aldebasi YH, Drasdo N, Morgan JE, North RV. S-cone, L + M-cone, and pattern, electroretinograms in ocular hypertension and glaucoma. Vision Res. 2004; 44:2749–2756. doi: 10.1016/j.visres.2004.06.015 15342219

8. Bach M, Unsoeld AS, Philippin H, Staubach F, Maier P, Walter HS, et al. Pattern ERG as an early glaucoma indicator in ocular hypertension: a long-term, prospective study. Invest Ophthalmol Vis Sci. 2006; 47:4881–4887. doi: 10.1167/iovs.05-0875 17065502

9. Hood DC, Xu L, Thienprasiddhi P, Greenstein VC, Odel JG, Grippo TM, et al. The pattern electroretinogram in glaucoma patients with confirmed visual field deficits. Invest Ophthalmol Vis Sci. 2005; 46:2411–2418. doi: 10.1167/iovs.05-0238 15980229

10. Salgarello T, Colotto A, Falsini B, Buzzonetti L, Cesari L, Iarossi G, et al. Correlation of pattern electroretinogram with optic disc cup shape in ocular hypertension. Invest Ophthalmol Vis Sci. 1999; 40:1989–1997. 10440253

11. Viswanathan S, Frishman LJ, Robson JG. The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci. 2000; 41:2797–2810. 10937600

12. Fiorentini A, Maffei L, Pirchio M, Spinelli D, Porciatti V. The ERG in response to alternating gratings in patients with diseases of the peripheral visual pathway. Invest Ophthalmol Vis Sci. 1981; 21:490–493. 7275535

13. Porciatti V. Electrophysiological assessment of retinal ganglion cell function. Exp Eye Res. 2015; 141:164–170. doi: 10.1016/j.exer.2015.05.008 25998495

14. Nagaraju M, Saleh M, Porciatti V. IOP-dependent retinal ganglion cell dysfunction in glaucomatous DBA/2J mice. Invest Ophthalmol Vis Sci. 2007; 48:4573–4579. doi: 10.1167/iovs.07-0582 17898280

15. Rohrschneider K, Burk RO, Kruse FE, Volcker HE. Reproducibility of the optic nerve head topography with a new laser tomographic scanning device. Ophthalmology. 1994; 101:1044–1049. doi: 10.1016/s0161-6420(94)31220-6 8008345

16. Janknecht P, Funk J. Optic nerve head analyzer and Heidelberg retina tomograph: relative error and reproducibility of topographic measurements in a model eye with simulated cataract. Graefes Arch Clin Exp Ophthalmol. 1995; 233:523–529. doi: 10.1007/bf00183434 8537028

17. Hatch WV, Flanagan JG, Williams-Lyn DE, Buys YM, Farra T, Trope GE. Interobserver agreement of Heidelberg retina tomograph parameters. J Glaucoma. 1999; 8:232–237. 10464730

18. Vergados A, Papaconstantinou D, Diagourtas A, Theodossiadis PG, Vergados I, Georgalas I. Correlation between optic nerve head parameters, RNFL, and CCT in patients with bilateral pseudoexfoliation using HRT-III. Semin Ophthalmol. 2015; 30:44–52. doi: 10.3109/08820538.2013.821509 24171762

19. Nucci C, Mancino R, Martucci A, Bolacchi F, Manenti G, Cedrone C, et al. 3-T Diffusion tensor imaging of the optic nerve in subjects with glaucoma: correlation with GDx-VCC, HRT-III and Stratus optical coherence tomography findings. Br J Ophthalmol. 2012; 96:976–980. doi: 10.1136/bjophthalmol-2011-301280 22628535

20. Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol. 1981; 99:635–649. doi: 10.1001/archopht.1981.03930010635009 6164357

21. Meredith SP, Swift L, Eke T, Broadway DC. The acute morphologic changes that occur at the optic nerve head induced by medical reduction of intraocular pressure. J Glaucoma. 2007; 16:556–561. doi: 10.1097/IJG.0b013e3180575229 17873718

22. Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci. 2000; 41:741–748. 10711689

23. Harwerth RS, Carter-Dawson L, Shen F, Smith EL 3rd, Crawford ML. Ganglion cell losses underlying visual field defects from experimental glaucoma. Invest Ophthalmol Vis Sci. 1999; 40:2242–2250. 10476789

24. Choi JA, Lee NY, Park CK. Interpretation of the Humphrey Matrix 24–2 test in the diagnosis of preperimetric glaucoma. Jpn J Ophthalmol. 2009; 53:24–30. doi: 10.1007/s10384-008-0604-0 19184305

25. Prokosch V, Eter N. Correlation between early retinal nerve fiber layer loss and visual field loss determined by three different perimetric strategies: white-on-white, frequency-doubling, or flicker-defined form perimetry. Graefes Arch Clin Exp Ophthalmol. 2014; 252:1599–1606. doi: 10.1007/s00417-014-2718-z 25074041

26. Ferreras A, Polo V, Larrosa JM, Pablo LE, Pajarin AB, Pueyo V, et al. Can frequency-doubling technology and short-wavelength automated perimetries detect visual field defects before standard automated perimetry in patients with preperimetric glaucoma? J Glaucoma. 2007; 16:372–383. doi: 10.1097/IJG.0b013e31803bbb17 17571000

27. Bach M, Cuno AK, Hoffmann MB. Retinal conduction speed analysis reveals different origins of the P50 and N95 components of the (multifocal) pattern electroretinogram. Exp Eye Res. 2018; 169:48–53. doi: 10.1016/j.exer.2018.01.021 29374551

28. Arden GB, Vaegan, Hogg CR. Clinical and experimental evidence that the pattern electroretinogram (PERG) is generated in more proximal retinal layers than the focal electroretinogram (FERG). Ann N Y Acad Sci. 1982; 388:580–607. doi: 10.1111/j.1749-6632.1982.tb50818.x 6953889

29. Cvenkel B, Sustar M, Perovsek D. Ganglion cell loss in early glaucoma, as assessed by photopic negative response, pattern electroretinogram, and spectral-domain optical coherence tomography. Doc Ophthalmol. 2017; 135:17–28. doi: 10.1007/s10633-017-9595-9 28567618

30. Wilsey LJ, Fortune B. Electroretinography in glaucoma diagnosis. Curr Opin Ophthalmol. 2016; 27:118–124. doi: 10.1097/ICU.0000000000000241 26720775

31. Bach M, Poloschek CM. Electrophysiology and glaucoma: current status and future challenges. Cell Tissue Res. 2013; 353:287–296. doi: 10.1007/s00441-013-1598-6 23525754

32. Fortune B, Reynaud J, Wang L, Burgoyne CF. Does optic nerve head surface topography change prior to loss of retinal nerve fiber layer thickness: a test of the site of injury hypothesis in experimental glaucoma. PLoS One. 2013; 8:e77831. doi: 10.1371/journal.pone.0077831 24204989

Článek vyšel v časopise


2019 Číslo 11