Impact of UVC-sustained recirculating air filtration on airborne bacteria and dust in a pig facility

Autoři: Lisa Eisenlöffel aff001;  Tobias Reutter aff002;  Matthias Horn aff003;  Simon Schlegel aff004;  Uwe Truyen aff001;  Stephanie Speck aff001
Působiště autorů: Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany aff001;  REVENTA® GmbH, Horstmar, Germany aff002;  Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany aff003;  sterilAir AG, Weinfelden, Switzerland aff004
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225047


High amounts of aerial pollutants like dust and microorganisms can pose serious health hazards to animals and humans. The aim of the current study therefore was, to assess the efficiency of UVC irradiation combined to air filtration in reducing airborne microorganisms at laboratory scale. In a second part, a UVC-combined recirculating air filtration module (UVC module) was implemented in a small animal facility in order to assess its improvement of air quality with regard to airborne bacteria and dust. Tests at laboratory scale were performed using aerosols of Staphylococcus (S.) aureus, Actinobacillus pleuropneumoniae, porcine parvovirus (PPV) and porcine reproductive and respiratory syndrome virus. We varied relative humidity (RH) to evaluate its effect on UVC irradiation efficiency. In addition, viability of pathogens inside the filter material was determined over up to six months. UVC-combined air filtration resulted in a more than 99% reduction of viral and bacterial particles. RH had no influence on UVC efficiency. Viability in the filter matter varied depending on the pathogen used and RH with S. aureus and PPV being most resistant. In our small pig facility consisting of two separated barns, weekly air measurements were conducted over a period of 13 weeks (10 piglets) and 16 weeks (11 piglets), respectively. Airborne bacterial numbers were significantly lower in the barn equipped with the UVC module compared to the reference barn. On average a reduction to 37% of reference values could be achieved for bacteria, whereas the amount of total dust was reduced to a much lesser extent (i.e. to 78% of reference values). Measures taken in front of and behind the UVC module revealed a reduction of 99.4% for airborne bacteria and 95.0% for total dust. To conclude, recirculating air filtration combined to UVC provided efficient reduction of pathogens at laboratory and experimental scale. The implementation of such devices might improve the overall environmental quality in animal facilities.

Klíčová slova:

Bacterial pathogens – Dust – Flow rate – Humidity – Staphylococcus aureus – Swine – Ultraviolet C – Aerosols


1. Otake S, Dee S, Corzo C, Oliveira S, Deen J. Long-distance airborne transport of infectious PRRSV and Mycoplasma hyopneumoniae from a swine population infected with multiple viral variants. Vet Microbiol. 2010;145: 198–208. doi: 10.1016/j.vetmic.2010.03.028 20418029

2. Gloster J, Champion HJ, Sørensen JH, Mikkelsen T, Ryall DB, Astrup P, et al. Airborne transmission of foot-and-mouth disease virus from Burnside Farm, Heddon-on-the-Wall, Northumberland, during the 2001 epidemic in the United Kingdom. Vet Rec. 2003;152: 525–533. doi: 10.1136/vr.152.17.525 12739601

3. de Rooij MM, Borlée F, Smit LA, de Bruin A, Janse I, Heederik DJ, Wouters IM. Detection of Coxiella burnetii in Ambient Air after a Large Q Fever Outbreak. PLoS One. 2016; 11(3): e0151281. doi: 10.1371/journal.pone.0151281 26991094

4. Stärk KDC, Nicolet J, Frey J. Detection of Mycoplasma hyopneumoniae by Air Sampling with a Nested PCR Assay. Appl Environ Microbiol. 1998; 64(2): 543–548. 9464391

5. Dee S, Batista L, Deen J, Pijoan C. Evaluation of an air-filtration system for preventing aerosol transmission of Porcine reproductive and respiratory syndrome virus. Can J Vet Res. 2005;69: 293–298. 16479728

6. Wenke C, Pospiech J, Reutter T, Truyen U, Speck S. Efficiency of different air filter types for pig facilities at laboratory scale. PLoS ONE. 2017;12(10): e0186558. doi: 10.1371/journal.pone.0186558 29028843

7. Dee S, Otake S, Deen J. Use of a production region model to assess the efficacy of various air filtration systems for preventing airborne transmission of porcine reproductive and respiratory syndrome virus and Mycoplasma hyopneumoniae: Results from a 2-year study. Virus Res. 2010;154: 177–184. doi: 10.1016/j.virusres.2010.07.022 20667494

8. Spronk G, Otake S, Dee S. Prevention of PRRSV infection in large breeding herds using air filtration. Vet Rec. 2010;166: 758–759. doi: 10.1136/vr.b4848 20543168

9. Carpenter GA, Cooper AW, Wheeler GE. The effect of air filtration on air hygiene and pig performance in early-weaner accommodation. Anim Prod. 1986;43: 505–515.

10. van’t Klooster CE, Roelofs PFMM, den Hartog LA. Effect of filtration, vacuum cleaning and washing in pig houses on aerosol levels and pig performance. Livest Prod Sci. 1993;33: 171–182.

11. Lau AK, Vizcarra AT, Lo KV, Luymes J. Recirculation of filtered air in pig barns. Can Agr Eng. 1996;3: 297–304.

12. Schulz J, Bao E, Clauß M, Hartung J. The potential of a new air cleaner to reduce airborne microorganisms in pig house air: preliminary results. Berl Munch Tierarztl Wochenschr. 2013;126: 143–148. 23540197

13. Anthony TR, Altmaier R, Park JH, Peters TM. Modeled effectiveness of ventilation with contaminant control devices on indoor air quality in a swine farrowing facility. J Occup Environ Hyg. 2014;11: 434–449. doi: 10.1080/15459624.2013.875186 24433305

14. Wenke C, Pospiech J, Reutter T, Altmann B, Truyen U, Speck S. Impact of different supply air and recirculating air filtration systems on stable climate, animal health, and performance of fattening pigs in a commercial pig farm. PLoS ONE. 2018;13(3): e0194641. doi: 10.1371/journal.pone.0194641 29558482

15. Hertel E. Ueber physiologische Wirkung von Strahlen verschiedener Wellenlänge. Zeitschrift für allgemeine Physiologie 1905;5: 95–122.

16. Riley RL, Kaufman JE. Effect of Relative Humidity on the Inactivation of Airborne Serratia marcescens by Ultraviolet Radiation. Appl Microbiol. 1972;23(6): 1113–1120. 4557562

17. Peccia J, Werth HM, Miller S, Hernandez M. Effects of Relative Humidity on the Ultraviolet Induced Inactivation of Airborne Bacteria. Aerosol Sci Technol 2001;35: 728–740.

18. Ko G, First MW, Burge HA. The Characterization of Upper-Room Ultraviolet Germicidal Irradiation in Inactivating Airborne Microorganisms. Environ Health Perspect 2002;110(1): 95–101. doi: 10.1289/ehp.0211095 11781170

19. Menzies D, Popa J, Hanley JA, Rand T, Milton DK. Effect of ultraviolet germicidal lights installed in office ventilation systems on workers' health and wellbeing: double-blind multiple crossover trial. Lancet. 2003;362: 1785–1791. doi: 10.1016/S0140-6736(03)14897-0 14654316

20. McDevitt JJ, Milton DK, Rudnick SN, First MW. Inactivation of Poxviruses by Upper-Room UVC Light in a Simulated Hospital Room Environment. PLoS ONE. 2008;3(9): e3186. doi: 10.1371/journal.pone.0003186 18781204

21. Escombe AR, Moore DAJ, Gilman RH, Navincopa M, Ticona E, Mitchell B, et al. Upper-Room Ultraviolet Light and Negative Air Ionization to Prevent Tuberculosis Transmission. PLoS Med. 2009;6(3): e1000043. doi: 10.1371/journal.pmed.1000043 19296717

22. McDevitt JJ, Rudnick SN, Radonovich LJ. Aerosol Susceptibility of Influenza Virus to UVC Light. Appl Environ Microbiol. 2012;78(6): 1666–1669. doi: 10.1128/AEM.06960-11 22226954

23. Chang CW, Li SY, Huang SH, Huang CK, Chen YY, Chen CC. Effects of ultraviolet germicidal irradiation and swirling motion on airborne Staphylococcus aureus, Pseudomonas aeruginosa and Legionella pneumophila under various relative humidities. Indoor Air. 2012;23: 74–84. doi: 10.1111/j.1600-0668.2012.00793.x 22680348

24. Seedorf J. Emissions of airborne dust and microorganisms. Landtechnik 2000;2: 182–183.

25. Holtkamp DJ, Kliebenstein JB, Neumann EJ, Zimmerman JJ, Rotto HF, Yoder TK, et al. Assessment of the economic impact of porcine reproductive and respiratory syndrome virus on United States pork producers. J Swine Health Prod. 2013;21(2): 72–84.

26. Morrison RB, Joo HS. Acute reproductive losses due to porcine parvovirus infection in a swine herd: herd observations and economic analysis of the losses. Prev Vet Med. 1984;2: 699–706.

27. Parke CR and Burgess GW. An economic assessment of porcine parvovirus vaccination. Aust Vet J. 1993;70: 177–180. doi: 10.1111/j.1751-0813.1993.tb06124.x 8393655

28. Anonymus. DIN EN ISO 16890–1:2017–08. Air filters for general ventilation—Part 1: Technical specifications, requirements and classification system based upon particulate matter efficiency (ePM) (ISO 16890–1:2016); German version. Available from: Cited 07 June 2019.

29. Anonymus. EN 779:2012–10. Particulate air filters for general ventilation—Determination of the filtration performance; German version EN 779:2012. Available from: Cited 07 June 2019.

30. Appel MJG, Cooper BJ, Greisen H, Scott F, Carmichael LE. Canine viral enteritis. I. Status report on corona- and parvo-like viral enteritides. Cornell Vet. 1979;69(3): 123–133. 223812

31. Spearman C. The method of “right and wrong cases” (“constant stimuli”) without Gauss`s formulae. Br J Psychol. 1908;2: 227–242.

32. Kaerber G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Arch Exp Path Pharma. 1921;162: 480–487.

33. Anonymus. Tierschutz-Nutztierhaltungsverordnung. 2001. Available from: Cited 07 June 2019.

34. Hartung J, Saleh M. Composition of dust and effects on animals. Landbauforsch Volk. 2007;308: 111–116.

35. Green CF, Scarpino PV. The use of ultraviolet germicidal irradiation (UVGI) in disinfection of airborne bacteria. Environ Eng Policy 2002;3: 101–107.

36. Xu P, Peccia J, Fabian P, Martyny JW, Fennelly KP, Hernandez M, et al. Efficacy of ultraviolet germicidal irradiation of upper-room air in inactivating airborne bacterial spores, mycobacteria in full-scale studies. Atmos Environ. 2003;37: 405–419.

37. Ko G, First MW, Burge HA. Influence of relative humidity on particle size and UV sensitivity of Serratia marcescens and Mycobaterium bovis BCG aerosols. Tuber Lung Dis. 2000;80 (4/5): 217–228.

38. Hijnen WAM, Beerendonk EF, Medema GJ. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review. Water Res. 2006,40: 3–22. doi: 10.1016/j.watres.2005.10.030 16386286

39. Kowalski WJ, Bahnfleth WP, Witham DL, Severin BF, Whittam TS. Mathematical Modeling of Ultraviolet Germicidal Irradiation for Air Disinfection. Quant Microbiol. 2000;2: 249–270.

40. Lin CY, Li CS. Control Effectiveness of Ultraviolet Germicidal Irradiation on Bioaerosols. Aerosol Sci Technol. 2002;36: 474–478.

41. Assavacheep P, Rycroft AN. Survival of Actinobacillus pleuropneumoniae outside the pig. Res Vet Sci. 2013;94: 22–26. doi: 10.1016/j.rvsc.2012.07.024 22892250

42. Mengeling WL, Lager KM, Vorwald AC. The effect of porcine parvovirus and porcine reproductive and respiratory syndrome virus on porcine reproductive performance. Anim Reprod Sci. 2000;60–61: 199–210. 10844195

43. Tseng CC, Li CS. Inactivation of Virus-Containing Aerosols by Ultraviolet Germicidal Irradiation. Aerosol Sci Technol. 2005;39: 1136–1142.

44. Rentschler HC, Nagy R, Mouromseff G. Bactericidal Effect of Ultraviolet Radiation. J Bacteriol. 1941;42: 745–774. 16560483

45. Walker CM, Ko G. Effect of Ultraviolet Germicidal Irradiation on Viral Aerosols. Environ Sci Technol. 2007;41: 5460–5465. doi: 10.1021/es070056u

46. Zhen H, Han T, Fennell DE, Gediminas M. Release of free DNA by membrane-impaired bacterial aerosols due to aerosolization and air sampling. Appl Environ Microbiol. 2013;79: 7780±7789. doi: 10.1128/AEM.02859-13 24096426.

47. Mainelis G, Willeke K, Baron P, Reponen T, Grinshpun SA, GoÂrny RL, et al. Electrical charges on airborne microorganisms. J Aerosol Sci. 2001;32: 1087±1110.

48. Seedorf J, Hartung J, Schröder M, Linkert KH, Pedersen S, Takai H, et al. Concentrations and emissions of airborne endotoxins and microorganisms in livestock buildings in Northern Europe. In: Journal of Agricultural Engineering Research. 1998; Vol. 1, No. 70. pp. 97–109.

49. Pedersen S, Nonnenmann M, Rautiainen R, Demmers TGM, Banhazi T, Lyngbye M. Dust in pig buildings. J Agric Saf Health. 2000;6: 261–274. 11217691

50. Chmielowiec-Korzeniowska A, Tymczyna L, Pyrz M, Trawińska B, Abramczyk K, Dobrowolska M. Occupational exposure level of pig facility workers to chemical and biological pollutants. Ann Agric Environ Med. 2018;25(2):262–267. doi: 10.26444/aaem/78479 29936814

51. Lau AK, Vizcarra AT, Lo KV, Luymes J. Recirculation of filtered air in pig barns. Can Agr Eng. 1996;3: 297–304.

52. Carpenter GA, Fryer JT. Air filtration in a piggery: filter design and dust mass balance. J Agric Engng Res. 1990;46: 171–186.

53. Terpstra FG, van 't Wout AB, Schuitemaker H, van Engelenburg FA, Dekkers DW, Verhaar R, et al. Potential and limitation of UVC irradiation for the inactivation of pathogens in platelet concentrates. Transfusion. 2008;48: 304–313. doi: 10.1111/j.1537-2995.2007.01524.x 18028277

54. Anthony TR, Altmaier R, Jones S, Gassman R, Park JH, Peters TM. Use of recirculating ventilation with dust filtration to improve wintertime air quality in a swine farrowing room. J Occup Environ Hyg. 2015;12: 635–646. doi: 10.1080/15459624.2015.1029616 25950713

55. Barber EM, Dawson JR, Battams VA, Nicol AC. Spatial variability of airborne and settled durst in a piggery. J Agric Engng Res. 1991;50: 107–127.

56. Mubareka S, Groulx N, Savory E, Cutts T, Theriault S, Scott JA et al. Bioaerosols and Transmission, a Diverse and Growing Community of Practice. Front Public Health. 2019;7: 23. doi: 10.3389/fpubh.2019.00023 30847337

57. Donham KJ. Association of environmental air contaminants with diseases and productivity in swine. Am J Vet Res. 1991;52: 1723–1730. 1767997

Článek vyšel v časopise


2019 Číslo 11