Maternal stress in Shank3ex4-9 mice increases pup-directed care and alters brain white matter in male offspring


Autoři: Bibiana K. Y. Wong aff001;  Jaclyn B. Murry aff003;  Rajesh Ramakrishnan aff001;  Fang He aff001;  Alfred Balasa aff004;  Gary R. Stinnett aff005;  Steen E. Pedersen aff005;  Robia G. Pautler aff005;  Ignatia B. Van den Veyver aff001
Působiště autorů: Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, United States of America aff001;  Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, United States of America aff002;  Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America aff003;  Department of Pediatrics, Section of Pediatrics Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America aff004;  Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America aff005
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224876

Souhrn

Gene-environment interactions contribute to the risk for Autism Spectrum Disorder (ASD). Among environmental factors, prenatal exposure to stress may increase the risk for ASD. To examine if there is an interaction between exposure to maternal stress and reduced dosage or loss of Shank3, wild-type (WT), heterozygous (HET) and homozygous (HOM) female mice carrying a deletion of exons four through nine of Shank3 (Shank3ex4-9) were exposed to chronic unpredictable mild stress (CUMS) from prior to conception throughout gestation. This study examined maternal care of these dams and the white matter microstructure in the brains of their adult male offspring. Overall, our findings suggest that maternal exposure to CUMS increased pup-directed care for dams of all three genotypes. Compared to WT and HET dams, HOM dams also exhibited increased maternal care behaviors with increased time spent in the nest and reduced cage exploration, regardless of exposure to CUMS. Diffusion tensor imaging showed higher mean fractional anisotropy in the hippocampal stratum radiatum of WT and HOM male offspring from dams exposed to CUMS and HOM offspring from unexposed dams, compared to WT male offspring from unexposed dams. These data support that CUMS in Shank3-mutant dams results in subtle maternal care alterations and long-lasting changes in the white matter of the hippocampus of their offspring.

Klíčová slova:

Animal behavior – Autism spectrum disorder – Behavior – Central nervous system – Diffusion tensor imaging – Mice – Mouse models – Psychological stress


Zdroje

1. American Psychiatric Association., American Psychiatric Association. DSM-5 Task Force. Diagnostic and statistical manual of mental disorders: DSM-5. 5th ed. Washington, D.C.: American Psychiatric Association; 2013. xliv, 947 p. p.

2. Christensen DL, Baio J, Braun KV, Bilder D, Charles J, Constantino JN, et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2012. MMWR Surveill Summ. 2016;65(3):1–23. doi: 10.15585/mmwr.ss6503a1 27031587.

3. Levy SE, Mandell DS, Schultz RT. Autism. Lancet. 2009;374(9701):1627–38. doi: 10.1016/S0140-6736(09)61376-3 19819542

4. Geisheker MR, Heymann G, Wang T, Coe BP, Turner TN, Stessman HAF, et al. Hotspots of missense mutation identify neurodevelopmental disorder genes and functional domains. Nat Neurosci. 2017;20(8):1043–51. Epub 2017/06/20. doi: 10.1038/nn.4589 28628100

5. Miles JH. Autism spectrum disorders—a genetics review. Genet Med. 2011;13(4):278–94. doi: 10.1097/GIM.0b013e3181ff67ba 21358411.

6. Stessman HA, Xiong B, Coe BP, Wang T, Hoekzema K, Fenckova M, et al. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat Genet. 2017;49(4):515–26. Epub 2017/02/14. doi: 10.1038/ng.3792 28191889

7. Chaste P, Leboyer M. Autism risk factors: genes, environment, and gene-environment interactions. Dialogues Clin Neurosci. 2012;14(3):281–92. 23226953

8. Kumar RA, Christian SL. Genetics of autism spectrum disorders. Current neurology and neuroscience reports. 2009;9(3):188–97. 19348707.

9. Betancur C, Buxbaum JD. SHANK3 haploinsufficiency: a "common" but underdiagnosed highly penetrant monogenic cause of autism spectrum disorders. Molecular autism. 2013;4(1):17. doi: 10.1186/2040-2392-4-17 23758743

10. Uchino S, Waga C. SHANK3 as an autism spectrum disorder-associated gene. Brain Dev. 2013;35(2):106–10. doi: 10.1016/j.braindev.2012.05.013 22749736.

11. Wang Z, Storm DR. Maternal behavior is impaired in female mice lacking type 3 adenylyl cyclase. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology. 2011;36(4):772–81. doi: 10.1038/npp.2010.211 21150908

12. Varghese M, Keshav N, Jacot-Descombes S, Warda T, Wicinski B, Dickstein DL, et al. Autism spectrum disorder: neuropathology and animal models. Acta neuropathologica. 2017;134(4):537–66. doi: 10.1007/s00401-017-1736-4 28584888

13. Noriuchi M, Kikuchi Y, Yoshiura T, Kira R, Shigeto H, Hara T, et al. Altered white matter fractional anisotropy and social impairment in children with autism spectrum disorder. Brain research. 2010;1362:141–9. doi: 10.1016/j.brainres.2010.09.051 20858472.

14. Beversdorf DQ, Stevens HE, Jones KL. Prenatal Stress, Maternal Immune Dysregulation, and Their Association With Autism Spectrum Disorders. Current psychiatry reports. 2018;20(9):76. doi: 10.1007/s11920-018-0945-4 30094645.

15. Kinney DK, Munir KM, Crowley DJ, Miller AM. Prenatal stress and risk for autism. Neuroscience and biobehavioral reviews. 2008;32(8):1519–32. doi: 10.1016/j.neubiorev.2008.06.004 18598714

16. Whitehead NS, Brogan DJ, Blackmore-Prince C, Hill HA. Correlates of experiencing life events just before or during pregnancy. Journal of psychosomatic obstetrics and gynaecology. 2003;24(2):77–86. 12854392.

17. Woods SM, Melville JL, Guo Y, Fan MY, Gavin A. Psychosocial stress during pregnancy. American journal of obstetrics and gynecology. 2010;202(1):61 e1–7. doi: 10.1016/j.ajog.2009.07.041 19766975

18. Wadhwa PD, Entringer S, Buss C, Lu MC. The contribution of maternal stress to preterm birth: issues and considerations. Clinics in perinatology. 2011;38(3):351–84. doi: 10.1016/j.clp.2011.06.007 21890014

19. Meijer A. Child psychiatric sequelae of maternal war stress. Acta psychiatrica Scandinavica. 1985;72(6):505–11. doi: 10.1111/j.1600-0447.1985.tb02647.x 2417452.

20. Beversdorf DQ, Manning SE, Hillier A, Anderson SL, Nordgren RE, Walters SE, et al. Timing of prenatal stressors and autism. Journal of autism and developmental disorders. 2005;35(4):471–8. doi: 10.1007/s10803-005-5037-8 16134032.

21. Class QA, Abel KM, Khashan AS, Rickert ME, Dalman C, Larsson H, et al. Offspring psychopathology following preconception, prenatal and postnatal maternal bereavement stress. Psychological medicine. 2014;44(1):71–84. doi: 10.1017/S0033291713000780 23591021

22. Roberts AL, Lyall K, Rich-Edwards JW, Ascherio A, Weisskopf MG. Maternal exposure to intimate partner abuse before birth is associated with autism spectrum disorder in offspring. Autism: the international journal of research and practice. 2016;20(1):26–36. doi: 10.1177/1362361314566049 25662292

23. Ronald A, Pennell CE, Whitehouse AJ. Prenatal Maternal Stress Associated with ADHD and Autistic Traits in early Childhood. Frontiers in psychology. 2010;1:223. doi: 10.3389/fpsyg.2010.00223 21833278

24. Walder DJ, Laplante DP, Sousa-Pires A, Veru F, Brunet A, King S. Prenatal maternal stress predicts autism traits in 6(1/2) year-old children: Project Ice Storm. Psychiatry research. 2014;219(2):353–60. doi: 10.1016/j.psychres.2014.04.034 24907222.

25. Ward AJ. A comparison and analysis of the presence of family problems during pregnancy of mothers of "autistic" children and mothers of normal children. Child psychiatry and human development. 1990;20(4):279–88. doi: 10.1007/bf00706020 2376213.

26. Rai D, Golding J, Magnusson C, Steer C, Lewis G, Dalman C. Prenatal and early life exposure to stressful life events and risk of autism spectrum disorders: population-based studies in Sweden and England. PloS one. 2012;7(6):e38893. doi: 10.1371/journal.pone.0038893 22719977

27. Allen MC, Donohue PK. Neuromaturation of multiples. Semin Neonatol. 2002;7(3):211–21. 12234745.

28. DiPietro JA, Novak MF, Costigan KA, Atella LD, Reusing SP. Maternal psychological distress during pregnancy in relation to child development at age two. Child development. 2006;77(3):573–87. doi: 10.1111/j.1467-8624.2006.00891.x 16686789.

29. Boersma GJ, Tamashiro KL. Individual differences in the effects of prenatal stress exposure in rodents. Neurobiol Stress. 2015;1:100–8. http://dx.doi.org/10.1016/j.ynstr.2014.10.006 27589662

30. Sharma S, Powers A, Bradley B, Ressler KJ. Gene x Environment Determinants of Stress- and Anxiety-Related Disorders. Annual review of psychology. 2016;67:239–61. doi: 10.1146/annurev-psych-122414-033408 26442668

31. Wermter AK, Laucht M, Schimmelmann BG, Banaschewski T, Sonuga-Barke EJ, Rietschel M, et al. From nature versus nurture, via nature and nurture, to gene x environment interaction in mental disorders. European child & adolescent psychiatry. 2010;19(3):199–210. doi: 10.1007/s00787-009-0082-z 20024596.

32. Beery AK, Kaufer D. Stress, social behavior, and resilience: insights from rodents. Neurobiol Stress. 2015;1:116–27. doi: 10.1016/j.ynstr.2014.10.004 25562050

33. Wang X, McCoy PA, Rodriguiz RM, Pan Y, Je HS, Roberts AC, et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet. 2011;20(15):3093–108. doi: 10.1093/hmg/ddr212 21558424

34. Chourbaji S, Hoyer C, Richter SH, Brandwein C, Pfeiffer N, Vogt MA, et al. Differences in mouse maternal care behavior—is there a genetic impact of the glucocorticoid receptor? PloS one. 2011;6(4):e19218. doi: 10.1371/journal.pone.0019218 21552522

35. Deacon RM. Assessing nest building in mice. Nature protocols. 2006;1(3):1117–9. doi: 10.1038/nprot.2006.170 17406392.

36. Macbeth AH, Stepp JE, Lee HJ, Young WS 3rd, Caldwell HK. Normal maternal behavior, but increased pup mortality, in conditional oxytocin receptor knockout females. Behavioral neuroscience. 2010;124(5):677–85. doi: 10.1037/a0020799 20939667

37. Martin-Sanchez A, Valera-Marin G, Hernandez-Martinez A, Lanuza E, Martinez-Garcia F, Agustin-Pavon C. Wired for motherhood: induction of maternal care but not maternal aggression in virgin female CD1 mice. Frontiers in behavioral neuroscience. 2015;9:197. doi: 10.3389/fnbeh.2015.00197 26257621

38. Bitner BR, Perez-Torres CJ, Hu L, Inoue T, Pautler RG. Improvements in a Mouse Model of Alzheimer’s Disease Through SOD2 Overexpression are Due to Functional and Not Structural Alterations. Magnetic resonance insights. 2012;5:1–6. doi: 10.4137/MRI.S9352 22639527

39. Meek LR, Dittel PL, Sheehan MC, Chan JY, Kjolhaug SR. Effects of stress during pregnancy on maternal behavior in mice. Physiology & behavior. 2001;72(4):473–9. doi: 10.1016/s0031-9384(00)00431-5 11282130.

40. Pardon M, Gerardin P, Joubert C, Perez-Diaz F, Cohen-Salmon C. Influence of prepartum chronic ultramild stress on maternal pup care behavior in mice. Biological psychiatry. 2000;47(10):858–63. doi: 10.1016/s0006-3223(99)00253-x 10807958.

41. Sarkar S, Craig MC, Dell’Acqua F, O’Connor TG, Catani M, Deeley Q, et al. Prenatal stress and limbic-prefrontal white matter microstructure in children aged 6–9 years: a preliminary diffusion tensor imaging study. The world journal of biological psychiatry: the official journal of the World Federation of Societies of Biological Psychiatry. 2014;15(4):346–52. doi: 10.3109/15622975.2014.903336 24815522.

42. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics. 2007;4(3):316–29. doi: 10.1016/j.nurt.2007.05.011 17599699

43. Bozdagi O, Sakurai T, Papapetrou D, Wang X, Dickstein DL, Takahashi N, et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Molecular autism. 2010;1(1):15. doi: 10.1186/2040-2392-1-15 21167025

44. Kouser M, Speed HE, Dewey CM, Reimers JM, Widman AJ, Gupta N, et al. Loss of predominant Shank3 isoforms results in hippocampus-dependent impairments in behavior and synaptic transmission. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2013;33(47):18448–68. doi: 10.1523/JNEUROSCI.3017-13.2013 24259569

45. Peca J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011;472(7344):437–42. doi: 10.1038/nature09965 21423165

46. Zhou Y, Kaiser T, Monteiro P, Zhang X, Van der Goes MS, Wang D, et al. Mice with Shank3 Mutations Associated with ASD and Schizophrenia Display Both Shared and Distinct Defects. Neuron. 2016;89(1):147–62. doi: 10.1016/j.neuron.2015.11.023 26687841

47. Wang X, Xu Q, Bey AL, Lee Y, Jiang YH. Transcriptional and functional complexity of Shank3 provides a molecular framework to understand the phenotypic heterogeneity of SHANK3 causing autism and Shank3 mutant mice. Molecular autism. 2014;5:30. doi: 10.1186/2040-2392-5-30 25071925

48. van Bogaert MJ, Groenink L, Oosting RS, Westphal KG, van der Gugten J, Olivier B. Mouse strain differences in autonomic responses to stress. Genes, brain, and behavior. 2006;5(2):139–49. Epub 2006/03/02. doi: 10.1111/j.1601-183X.2005.00143.x 16507005.

49. Crawley JN. Behavioral phenotyping strategies for mutant mice. Neuron. 2008;57(6):809–18. Epub 2008/03/28. doi: 10.1016/j.neuron.2008.03.001 18367082.

50. Maestripieri D, Badiani A, Puglisi-Allegra S. Prepartal chronic stress increases anxiety and decreases aggression in lactating female mice. Behavioral neuroscience. 1991;105(5):663–8. doi: 10.1037//0735-7044.105.5.663 1815617.

51. Maes JH, Eling PA, Wezenberg E, Vissers CT, Kan CC. Attentional set shifting in autism spectrum disorder: differentiating between the role of perseveration, learned irrelevance, and novelty processing. Journal of clinical and experimental neuropsychology. 2011;33(2):210–7. doi: 10.1080/13803395.2010.501327 20694871.

52. Ameis SH, Catani M. Altered white matter connectivity as a neural substrate for social impairment in Autism Spectrum Disorder. Cortex. 2015;62:158–81. doi: 10.1016/j.cortex.2014.10.014 25433958.

53. Mak-Fan KM, Morris D, Vidal J, Anagnostou E, Roberts W, Taylor MJ. White matter and development in children with an autism spectrum disorder. Autism: the international journal of research and practice. 2013;17(5):541–57. doi: 10.1177/1362361312442596 22700988.

54. Zoghbi HY, Bear MF. Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb Perspect Biol. 2012;4(3). doi: 10.1101/cshperspect.a009886 22258914

55. Uppal N, Puri R, Yuk F, Janssen WG, Bozdagi-Gunal O, Harony-Nicolas H, et al. Ultrastructural analyses in the hippocampus CA1 field in Shank3-deficient mice. Molecular autism. 2015;6:41. doi: 10.1186/s13229-015-0036-x 26137200

56. Etherton M, Foldy C, Sharma M, Tabuchi K, Liu X, Shamloo M, et al. Autism-linked neuroligin-3 R451C mutation differentially alters hippocampal and cortical synaptic function. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(33):13764–9. doi: 10.1073/pnas.1111093108 21808020

57. Negron-Oyarzo I, Neira D, Espinosa N, Fuentealba P, Aboitiz F. Prenatal Stress Produces Persistence of Remote Memory and Disrupts Functional Connectivity in the Hippocampal-Prefrontal Cortex Axis. Cereb Cortex. 2015;25(9):3132–43. doi: 10.1093/cercor/bhu108 24860018.

58. van Rooij D, Anagnostou E, Arango C, Auzias G, Behrmann M, Busatto GF, et al. Cortical and Subcortical Brain Morphometry Differences Between Patients With Autism Spectrum Disorder and Healthy Individuals Across the Lifespan: Results From the ENIGMA ASD Working Group. The American journal of psychiatry. 2018;175(4):359–69. doi: 10.1176/appi.ajp.2017.17010100 29145754.

59. Gordon I, Jack A, Pretzsch CM, Vander Wyk B, Leckman JF, Feldman R, et al. Intranasal Oxytocin Enhances Connectivity in the Neural Circuitry Supporting Social Motivation and Social Perception in Children with Autism. Scientific reports. 2016;6:35054. doi: 10.1038/srep35054 27845765

60. Nacher J, Pham K, Gil-Fernandez V, McEwen BS. Chronic restraint stress and chronic corticosterone treatment modulate differentially the expression of molecules related to structural plasticity in the adult rat piriform cortex. Neuroscience. 2004;126(2):503–9. doi: 10.1016/j.neuroscience.2004.03.038 15207367.


Článek vyšel v časopise

PLOS One


2019 Číslo 11