Effect of caffeine on neuromuscular function following eccentric-based exercise

Autoři: Ana C. Santos-Mariano aff001;  Fabiano Tomazini aff001;  Leandro C. Felippe aff001;  Daniel Boari aff004;  Romulo Bertuzzi aff005;  Fernando R. De-Oliveira aff006;  Adriano E. Lima-Silva aff001
Působiště autorů: Sport Science Research Group, Academic Center of Vitoria, Federal University of Pernambuco, Vitoria de Santo Antao, Pernambuco, Brazil aff001;  Human Performance Research Group, Academic Department of Physical Education, Federal University of Technology – Parana, Curitiba, Parana, Brazil aff002;  Human Performance Research Group, Federal University of Parana, Curitiba, Parana, Brazil aff003;  Center of Engineering, Modeling, and Applied Social Sciences, Federal University of ABC, Sao Bernardo do Campo, Sao Paulo, Brazil aff004;  Endurance Performance Research (GEDAE-USP), School of Sport and Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil aff005;  Center for Studies of Human Movement, Department of Physical Education, Federal University of Lavras, Minas Gerais, Brazil aff006
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224794


This study investigated the effect of caffeine on neuromuscular function, power and sprint performance during the days following an eccentric-based exercise. Using a randomly counterbalanced, crossover and double-blinded design, eleven male jumpers and sprinters (age: 18.7 ± 2.7 years) performed a half-squat exercise (4 x 12 repetitions at 70% of 1 RM), with eccentric action emphasized by using a flexible strip attached to their knees (Tirante Musculador®). They ingested either a capsule of placebo or caffeine (5 mg.kg-1 body mass) 24, 48 and 72 h after. Neuromuscular function and muscle power (vertical countermovement-jump test) were assessed before and after the half-squat exercise and 50 min after the placebo or caffeine ingestion at each time-point post-exercise. Sprint performance was measured at pre-test and 75 min after the placebo or caffeine ingestion at each time-point post-exercise. Maximal voluntary contraction (overall fatigue) and twitch torque (peripheral fatigue) reduced after the half-squat exercise (-11 and -28%, respectively, P < 0.05) but returned to baseline 24 h post-exercise (P > 0.05) and were not affected by caffeine ingestion (P > 0.05). The voluntary activation (central fatigue) and sprint performance were not altered throughout the experiment and were not different between caffeine and placebo. However, caffeine increased height and power during the vertical countermovement-jump test at 48 and 72 h post half-squat exercise, when compared to the placebo (P < 0.05). In conclusion, caffeine improves muscle power 48 and 72 h after an eccentric-based exercise, but it has no effect on neuromuscular function and sprint performance.

Klíčová slova:

Caffeine – Fatigue – Human performance – Ingestion – Material fatigue – Myalgia – Running – Strength training


1. Cook CJ, Beaven CM, Kilduff LP. Three weeks of eccentric training combined with overspeed exercises enhances power and running speed performance gains in trained athletes. J Strength Cond Res. 2013;27: 1280–1286. doi: 10.1519/JSC.0b013e3182679278 22820207

2. Enoka RM. Eccentric contractions require unique activation strategies by the nervous system. J Appl Physiol. 1996;81: 2339–2346. doi: 10.1152/jappl.1996.81.6.2339 9018476

3. Stauber WT. Eccentric Action of Muscles: Physiology, Injury, and Adaptation. Exerc Sport Sci Rev. 1989;17: 157–86. doi: 10.1249/00003677-198900170-00008 2676546

4. Prasartwuth O, Taylor JL, Gandevia SC. Maximal force, voluntary activation and muscle soreness after eccentric damage to human elbow flexor muscles. J Physiol. 2005;567: 337–348. doi: 10.1113/jphysiol.2005.087767 15946963

5. Goodall S, Thomas K, Barwood M, Keane K, Gonzalez JT, St Clair Gibson A, et al. Neuromuscular changes and the rapid adaptation following a bout of damaging eccentric exercise. Acta Physiol. 2017;220: 486–500. doi: 10.1111/apha.12844 27981782

6. Endoh T, Nakajima T, Sakamoto M, Komiyama T. Effects of muscle damage induced by eccentric exercise on muscle fatigue. Med Sci Sport Exerc. 2005;37: 1151–1156. doi: 10.1249/01.mss.0000170098.26968.eb 16015132

7. Skurvydas A, Mamkus G, Kamandulis S, Dudoniene V, Valanciene D, Westerblad H. Mechanisms of force depression caused by different types of physical exercise studied by direct electrical stimulation of human quadriceps muscle. Eur J Appl Physiol. 2016;116: 2215–2224. doi: 10.1007/s00421-016-3473-0 27637589

8. Thomas K, Brownstein CG, Dent J, Parker P, Goodall S, Howatson G. Neuromuscular Fatigue and Recovery after Heavy Resistance, Jump, and Sprint Training. Med Sci Sport Exerc. 2018;50: 2526–2535. doi: 10.1249/MSS.0000000000001733 30067591

9. Cook Dane B, O´Connor Patrick J, Eubanks Steven A, Smith Jerome C, Lee M. Naturally occurring muscle pain during exercise : assessment and experimental evidence. Med Sci Sport Exerc. 1997;29: 999–1012.

10. Racinais S, Bringard A, Puchaux K, Noakes TD, Perrey S. Modulation in voluntary neural drive in relation to muscle soreness. Eur J Appl Physiol. 2008;102: 439–446. doi: 10.1007/s00421-007-0604-7 17978834

11. Rattray B, Christos A, Kristy M, Joseph N, Matthew D. Is it time to turn our attention toward central mechanisms for post-exertional recovery strategies and performance? Front Physiol. 2015;6. doi: 10.3389/fphys.2015.00079 25852568

12. Chester N, Wojek N. Caffeine Consumption Amongst British Athletes Following Changes to the 2004 WADA Prohibited List. Int J Sports Med. 2008;29: 524–528. doi: 10.1055/s-2007-989231 18027309

13. Motl RW, O’Connor PJ, Dishman RK. Effect of caffeine on perceptions of leg muscle pain during moderate intensity cycling exercise. J Pain. 2003;4: 316–321. 14622688

14. Sökmen B, Armstrong LE, Kraemer WJ, Casa DJ, Dias JC, Judelson DA, et al. Caffeine Use in Sports: Considerations for the Athlete. J Strength Cond Res. 2008;22: 978–986. doi: 10.1519/JSC.0b013e3181660cec 18438212

15. Green MS, Martin TD, Corona BT. Effect of Caffeine Supplementation on Quadriceps Performance Following Eccentric Exercise. J Strength Cond Res. 2018;32: 2863–2871. doi: 10.1519/JSC.0000000000002530 29481452

16. Gonçalves L de S, Painelli V de S, Yamaguchi G, Oliveira LF, Saunders B, Silva RP, et al. Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. J Appl Physiol. 2017;123: 213–220. doi: 10.1152/japplphysiol.00260.2017 28495846

17. Edir da Silva M, Padullés JM, Núñez Álvarez VM, Vaamonde Martín DM, Viana Montaner M, Gómez Puerto JR, et al. Análisis electromiográfico y de percepción de esfuerzo del tirante musculador con respecto al ejercicio de medio squat. Apunt Educ Física y Deport. 2005;82: 45–52.

18. Brown LEEE, Weir JP. ASEP procedures recommendation I: accurate assessment of muscular strength and power. J Exerc Physiol. 2001. https://www.researchgate.net/publication/235782389ASEP

19. Amann M, Dempsey JA. Locomotor muscle fatigue modifies central motor drive in healthy humans and imposes a limitation to exercise performance. J Physiol. 2008;586: 161–73. doi: 10.1113/jphysiol.2007.141838 17962334

20. Keeton RB, Binder-Macleod SA. Low-Frequency Fatigue. Phys Ther. 2006;86: 1146–1150. https://doi.org/10.1093/ptj/86.8.1146 16879048

21. Merton PA. Voluntary strength and fatigue. J Physiol. 1954;123: 553–564. doi: 10.1113/jphysiol.1954.sp005070 13152698

22. Kenttä G, Hassmén P. Overtraining and Recovery A Conceptual Model. 1998;26: 1–16.

23. Warren GL, Park ND, Maresca RD, Mckibans KI, Millard-stafford ML. Effect of Caffeine Ingestion on Muscular Strength and Endurance: A Meta-Analysis. Med Sci Sport Exerc. 2010;42: 1375–1387. doi: 10.1249/MSS.0b013e3181cabbd8 20019636

24. Mansour SG, Verma G, Pata RW, Martin TG, Perazella MA, Parikh CR. Kidney Injury and Repair Biomarkers in Marathon Runners. Am J Kidney Dis. 2017;70: 252–261. doi: 10.1053/j.ajkd.2017.01.045 28363731

25. Mougios V. Reference intervals for serum creatine kinase in athletes. Br J Sports Med. 2007;41: 674–688. doi: 10.1136/bjsm.2006.034041 17526622

26. Tietz NW. Clinical Guide to Laboratory Tests. 3 rd editi. Philadelphia: Saunders; 1995.

27. Sabol F, Grgic J, Mikuli P. The Effects of Three Different Doses of Caffeine on Jumping and Throwing Performance: A Randomized, Double-Blind, Crossover Study. Int J Sports Physiol Perform. 2019; 1–25. https://doi.org/10.1123/ijspp.2018-0884

28. Abian-Vicen J, Puente C, Salinero JJ, González-Millán C, Areces F, Muñoz G, et al. A caffeinated energy drink improves jump performance in adolescent basketball players. Amino Acids. 2014;46: 1333–1341. doi: 10.1007/s00726-014-1702-6 24599611

29. Bloms LP, Fitzgerald JS, Short MW, Whitehead JR. The Effects of Caffeine on Vertical Jump Height and Execution in Collegiate Athletes. J Strength Cond Res. 2016;30: 1855–61. doi: 10.1519/JSC.0000000000001280 26626028

30. Foskett A, Ali A, Gant N. Caffeine enhances cognitive function and skill performance during simulated soccer activity. Int J Sport Nutr Exerc Metab. 2009;19: 410–423. doi: 10.1123/ijsnem.19.4.410 19827465

31. Pérez-López A, Salinero JJ, Abian-Vicen J, Valadés D, Lara B, Hernandez C, et al. Caffeinated energy drinks improve volleyball performance in elite female players. Med Sci Sports Exerc. 2015;47: 850–856. doi: 10.1249/MSS.0000000000000455 25051390

32. Zbinden-Foncea H, Rada I, Gomez J, Kokaly M, Stellingwerff T, Deldicque L, et al. Effects of Caffeine on Countermovement-Jump Performance Variables in Elite Male Volleyball Players. Int J Sports Physiol Perform. 2018;13: 1–20.

33. Grgic J, Mikulic P, Schoenfeld BJ, Bishop DJ, Pedisic Z. The Influence of Caffeine Supplementation on Resistance Exercise: A Review. Sport Med. 2018;49: 17–30. doi: 10.1007/s40279-018-0997-y 30298476

34. Grgic J, Trexler ET, Lazinica B, Pedisic Z. Effects of caffeine intake on muscle strength and power : a systematic review and meta-analysis. J Int Soc Sports Nutr. 2018;15: 1–10. https://doi.org/10.1186/s12970-018-0216-0

Článek vyšel v časopise


2019 Číslo 11