Development of a novel automatable fabrication method based on electrospinning co electrospraying for rotator cuff augmentation patches


Autoři: Sergi Rey-Vinolas aff001;  Oscar Castaño aff001;  Leonardo Ruiz-Macarrilla aff005;  Xavier Llorens aff006;  José M. Mora aff006;  Elisabeth Engel aff001;  Miguel A. Mateos-Timoneda aff001
Působiště autorů: Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain aff001;  CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain aff002;  Serra Hunter Fellow, Electronics and Biomedical Engineering Department, University of Barcelona (UB), Barcelona, Spain aff003;  Bioelectronics Unit and Nanobioengineering Lab., Institute for Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Barcelona, Spain aff004;  Servei de C.O.T., Hospital Universitario Germans Trias i Pujol, Badalona, Spain aff005;  Fundació Joan Costa Roma, Consorci Sanitari de Terrassa, Terrassa, Spain aff006;  Servei de C.O.T., Hospital de Terrassa, Consorci Sanitari de Terrassa, Terrassa, Spain aff007;  Department of Materials Science and Metallurgical Engineering, EEBE campus, Technical University of Catalonia (UPC), Barcelona, Spain aff008
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224661

Souhrn

Rotator cuff tear is one of the most common shoulder diseases. Rotator cuff augmentation (RCA) is trying to solve the high retear failure percentage after the surgery procedures (20–90%). The ideal augmentation patch must provide a temporal mechanical support during the healing process. In this work, we proposed a simple method for the fabrication of synthetic RCA patches. This method combines the use of electrospraying to produce poly-L-lactic-co-ε-caprolactone (PLC) films in an organogel form and electrospinning to produce poly(lactic) acid (PLA) nanofibers. The device consists in a combination of layers, creating a multilayered construct, enabling the possibility of tuning its mechanical properties and thickness. Besides, both techniques are simple to escalate for industrial production. A complete characterization has been performed to optimize the involved number of layers and production time of PLC films and PLA nanofibers fabrication, obtaining a final optimal configuration for RCA devices. Structural, mechanical and suture properties were evaluated. Also, the possibility of surface functionalization to improve the bioactivity of the scaffold was studied, adding aligned electrospun PLA nanofibers on the surface of the device to mimic the natural tendon topography. Surface modification was characterized by culturing adult normal human dermal fibroblasts. Lack of toxicity was detected for material presented, and cell alignment shape orientation guided by aligned fibers, mimicking tendon structure, was obtained. Cell proliferation and protein production were also evaluated.

Klíčová slova:

Cell metabolism – Collagens – Mechanical properties – Nanomaterials – Scanning electron microscopy – Tendons – Thin films – Tissue repair


Zdroje

1. McElvany MD, McGoldrick E, Gee AO, Neradilek MB, Matsen FA. Rotator cuff repair: Published evidence on factors associated with repair integrity and clinical outcome. Am J Sport Med. 2015;43: 491–500. doi: 10.1177/0363546514529644 24753240

2. Fehringer E V., Sun J, VanOeveren LS, Keller BK, Matsen FA. Full-thickness rotator cuff tear prevalence and correlation with function and co-morbidities in patients sixty-five years and older. J Shoulder Elb Surg. 2008;17: 881–885. doi: 10.1016/j.jse.2008.05.039 18774738

3. Yamaguchi K, Ditsios K, Middleton WD, Hildebolt CF, Galatz LM, Teefey SA. The Demographic and Morphological Features of Rotator Cuff Disease. A Comparison of Asymptomatic and Symptomatic Shoulders. J Bone Jt Surg Am. 2006;88: 1699–1704. doi: 10.2106/jbjs.e.00835 16882890

4. Ricchetti ET, Aurora A, Iannotti JP, Derwin KA. Scaffold devices for rotator cuff repair. J shoulder Elb Surg. 2012;21: 251–265. doi: 10.1016/j.jse.2011.10.003 22244069

5. Vitale MA, Vitale MG, Zivin JG, Braman JP, Bigliani LU, Flatow EL. Rotator cuff repair: An analysis of utility scores and cost-effectiveness. J Shoulder Elb Surg. 2007;16: 181–187. doi: 10.1016/j.jse.2006.06.013 17399623

6. Aurora A, Eng D, Mccarron JA, Van Den Bogert AJ, Gatica JE, Iannotti JP, et al. The biomechanical role of scaffolds in augmented rotator cuff tendon repairs. J Shoulder Elb Surg. 2012;21: 1064–1071. doi: 10.1016/j.jse.2011.05.014 21885301

7. Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am. 2004;86–A: 219–24.

8. Gazielly DF, Gleyze P, Montagnon C. Functional and anatomical results after rotator cuff repair. Clin Orthop Relat Res. 1994; 43–53.

9. Harryman DT, Mack LA, Wang KY, Jackins SE, Richardson ML, Matsen FA. Repairs of the rotator cuff. Correlation of functional results with integrity of the cuff. J Bone Joint Surg Am. 1991;73: 982–9. 1874784

10. France EP, Paulos LE, Harner CD, Straight CB. Biomechanical evaluation of rotator cuff fixation methods. Am J Sports Med. 1989;17: 176–181. doi: 10.1177/036354658901700206 2757125

11. Gilbert TW, Freund JM, Badylak SF. Quantification of DNA in Biologic Scaffold Materials. J Surg Res. 2009;152: 135–139. doi: 10.1016/j.jss.2008.02.013 18619621

12. Keane TJ, Londono R, Turner NJ, Badylak SF. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials. 2012;33: 1771–1781. doi: 10.1016/j.biomaterials.2011.10.054 22137126

13. Walton BR, Bowman NK, Khatib Y, Murrell GAC. Restore Orthobiologic Implant: Not Recommended for Augmentation of Rotator Cuff Repairs. J Bone Jt Surg. 2007; 786–792. doi: 10.2106/JBJS.F.00315 17403801

14. Ratcliffe A, Butler DL, Dyment NA, Cagle PJ, Proctor CS, Ratcliffe SS, et al. Scaffolds for Tendon and Ligament Repair and Regeneration. Ann Biomed Eng. 2015;43: 819–831. doi: 10.1007/s10439-015-1263-1 25650098

15. Prabhath A, Vernekar VN, Sanchez E, Laurencin CT. Growth factor delivery strategies for rotator cuff repair and regeneration. Int J Pharm. 2018;544: 358–371. doi: 10.1016/j.ijpharm.2018.01.006 29317260

16. Liu S, Qin M, Hu C, Wu F, Cui W, Jin T, et al. Tendon healing and anti-adhesion properties of electrospun fibrous membranes containing bFGF loaded nanoparticles. Biomaterials. 2013;34: 4690–4701. doi: 10.1016/j.biomaterials.2013.03.026 23541108

17. Sill TJ, von Recum HA. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials. 2008;29: 1989–2006. doi: 10.1016/j.biomaterials.2008.01.011 18281090

18. Bodnár E, Grifoll J, Rosell-llompart J. Polymer solution electrospraying: A tool for engineering particles and fi lms with controlled morphology. J Aerosol Sci. 2018;125: 93–118. doi: 10.1016/j.jaerosci.2018.04.012

19. Jang JH, Castano O, Kim HW. Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Deliv Rev. 2009;61: 1065–1083. doi: 10.1016/j.addr.2009.07.008 19646493

20. Bock N, Dargaville TR, Woodruff MA. Electrospraying of polymers with therapeutic molecules: State of the art. Prog Polym Sci. 2012;37: 1510–1551. doi: 10.1016/j.progpolymsci.2012.03.002

21. Punet X, Levato R, Bataille I, Letourneur D, Engel E, Mateos-Timoneda MA. Polylactic acid organogel as versatile scaffolding technique. Polym (United Kingdom). 2017;113. doi: 10.1016/j.polymer.2017.02.056

22. Álvarez Z, Castaño O, Castells AA, Mateos-timoneda MA, Planell JA, Engel E, et al. Neurogenesis and vascularization of the damaged brain using a lactate-releasing biomimetic scaffold. Biomaterials. 2014;35: 4769–4781. doi: 10.1016/j.biomaterials.2014.02.051 24636215

23. Álvarez Z, Mateos-timoneda MA, Hyro P, Castaño O, Planell JA, Perales JC, et al. The effect of the composition of PLA films and lactate release on glial and neuronal maturation and the maintenance of the neuronal progenitor niche. Biomaterials. 2013;34. doi: 10.1016/j.biomaterials.2012.12.001 23276659

24. Hu X-F, Feng Y, Xiang G, Lei W, Wang L. Lactic acid of PLGA coating promotes angiogenesis on the interface between porous titanium and diabetic bone. J Mater Chemestry B. 2018; 2274–2288. doi: 10.1039/c7tb03247a

25. Mateos-timoneda MA, Castano O, Planell JA, Engel E. Effect of structure, topography and chemistry on fibroblast adhesion and morphology. J Mater Sci Mater Med. 2014; 1781–1787. doi: 10.1007/s10856-014-5199-z 24668270

26. Persano L, Camposeo A, Tekmen C, Pisignano D. Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibers: A Review. Macromol Mater Eng. 2013; 504–520. doi: 10.1002/mame.201200290

27. Yu M, Dong R, Yan X, Yu G, You M, Ning X, et al. Recent Advances in Needleless Electrospinning of Ultrathin Fibers: From Academia to Industrial Production. Macromol Mater Eng. 2017. doi: 10.1002/mame.201700002

28. Barber FA, Aziz-jacobo J. Biomechanical Testing of Commercially Available Soft-Tissue Augmentation Materials. J Arthrosc Relat Surg. 2009;25: 1233–1239. doi: 10.1016/j.arthro.2009.05.012 19896044

29. Derwin KA, Leigh DR, Iannotti JP. Commercial Extracellular Matrix Scaffolds for Rotator Cuff Tendon Repair. J Bone Jt Surg. 2006; 2665–2672.

30. Lacroix AS, Duenwald-kuehl SE, Lakes RS, Vanderby R. Relationship between tendon stiffness and failure: a metaanalysis. J Appl Physiol. 2013; 43–51. doi: 10.1152/japplphysiol.01449.2012 23599401

31. Coons DA, Alan Barber F. Tendon graft substitutes—Rotator cuff patches. Sports Med Arthrosc. 2006;14: 185–190. doi: 10.1111/ens.12096 17135966

32. Wang C H. J. Mechanobiology of tendon. J Biomech. 2006;39: 1563–1582. doi: 10.1016/j.jbiomech.2005.05.011 16000201

33. Chaudhury S, Holland C, Thompson MS, Vollrath F, Carr AJ. Tensile and shear mechanical properties of rotator cuff repair patches. J Shoulder Elb Surg. 2012;21: 1168–1176. doi: 10.1016/j.jse.2011.08.045 22079767

34. Barber FA, Herbert MA, Coons DA. Tendon Augmentation Grafts: Biomechanical Failure Loads and Failure Patterns. Arthrosc—J Arthrosc Relat Surg. 2006;22: 534–538. doi: 10.1016/j.arthro.2005.12.021 16651164

35. Jung C, Spreiter G, Audigé L, Ferguson SJ, Flury M. Patch-augmented rotator cuff repair: influence of the patch fixation technique on primary biomechanical stability. Arch Orthop Trauma Surg. 2016;136: 609–616. doi: 10.1007/s00402-016-2436-6 26983721

36. Chainani A, Little D. Current Status of Tissue-Engineered Scaffolds for Rotator Cuff Repair. Tech Orthop. 2016;31: 91–97. doi: 10.1097/BTO.0000000000000168 27346922

37. Patel S, Gualtieri AP, Lu HH, Levine WN. Advances in biologic augmentation for rotator cuff repair. Ann N Y Acad Sci. 2016;1383: 97–114. doi: 10.1111/nyas.13267 27750374

38. Voleti PB, Buckley MR, Soslowsky LJ. Tendon Healing: Repair and Regeneration. Annu Rev Biomed Eng. 2012;14: 47–71. doi: 10.1146/annurev-bioeng-071811-150122 22809137

39. Wang W, He J, Feng B, Zhang Z, Zhang W, Zhou G, et al. Aligned nanofibers direct human dermal fibroblasts to tenogenic phenotype in vitro and enhance tendon regeneration in vivo. Nanomedicine. 2016;11: 1055–1072. doi: 10.2217/nnm.16.24 27074092

40. Yin Z, Chen X, Chen JL, Shen WL, Hieu Nguyen TM, Gao L, et al. The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials. 2010;31: 2163–2175. doi: 10.1016/j.biomaterials.2009.11.083 19995669

41. Yin Z, Chen X, Song H, Hu J, Tang Q, Zhu T, et al. Electrospun scaffolds for multiple tissues regeneration in vivo through topography dependent induction of lineage specific differentiation. Biomaterials. 2015;44: 173–185. doi: 10.1016/j.biomaterials.2014.12.027 25617136

42. Fee T, Surianarayanan S, Downs C, Zhou Y, Berry J. Nanofiber alignment regulates NIH3T3 cell orientation and cytoskeletal gene expression on electrospun PCL+gelatin nanofibers. PLoS One. 2016;11: 1–12. doi: 10.1371/journal.pone.0154806 27196306

43. Bashur CA, Dahlgren LA, Goldstein AS. Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(d,l-lactic-co-glycolic acid) meshes. Biomaterials. 2006;27: 5681–5688. doi: 10.1016/j.biomaterials.2006.07.005 16914196

44. Hun C, Joon H, Hee I, Kang Y, Ae I, Park K-D, et al. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials. 2005;26: 1261–1270. doi: 10.1016/j.biomaterials.2004.04.037 15475056

45. Teh TKH, Toh S, Goh JCH. Aligned Fibrous Scaffolds for Enhanced Mechanoresponse and Tenogenesis of Mesenchymal Stem Cells. Tissue Eng Part A. 2013;19: 1360–1372. doi: 10.1089/ten.TEA.2012.0279 23327653

46. Wang JH-C, Jia F, Gilbert TW, Woo SL-Y. Cell orientation determines the aligment of cell-produced collagenous matrix. J Biomech. 2003;36: 97–102. doi: 10.1016/s0021-9290(02)00233-6 12485643

47. James R, Kesturu G, Balian G, Chhabra AB. Tendon: Biology, Biomechanics, Repair, Growth Factors, and Evolving Treatment Options. J Hand Surg Am. 2008;33: 102–112. doi: 10.1016/j.jhsa.2007.09.007 18261674

48. Sharma P, Maffulli N. Basic biology of tendon injury and healing. Surgeon. 2005;3: 309–316. doi: 10.1016/S1479-666X(05)80109-X 16245649

49. Bosworth LA, Alam N, Wong JK, Downes S. Investigation of 2D and 3D electrospun scaffolds intended for tendon repair. J Mater Sci Mater Med. 2013;24: 1605–1614. doi: 10.1007/s10856-013-4911-8 23504088


Článek vyšel v časopise

PLOS One


2019 Číslo 11