Genetic diversity and drug resistance of HIV-1 among infected pregnant women newly diagnosed in Luanda, Angola


Autoři: Cruz S. Sebastião aff001;  Zoraima Neto aff002;  Carlos S. de Jesus aff005;  Marinela Mirandela aff002;  Domingos Jandondo aff002;  José C. Couto-Fernandez aff005;  Amilcar Tanuri aff006;  Joana Morais aff002;  Miguel Brito aff004
Působiště autorů: NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal aff001;  Laboratório de Biologia Molecular, Instituto Nacional de Investigação em Saúde, Luanda, Angola aff002;  Instituto Superior de Ciências da Saúde, Universidade Agostinho Neto, Luanda, Angola aff003;  Centro de Investigação em Saúde de Angola, Luanda, Angola aff004;  Laboratorio de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil aff005;  Laboratório de Virologia Molecular, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil aff006;  Faculdade de Medicina, Universidade Agostinho Neto, Luanda, Angola aff007;  Health and Technology Research Center, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal aff008
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225251

Souhrn

Monitoring genetic diversity and drug resistance mutations (DRMs) is critical for understanding HIV epidemiology. Here, we report HIV-1 genetic diversity and DRMs in blood samples from 42 HIV-positive pregnant women naive to antiretroviral therapy (ART), in Luanda. The samples were subjected to nested-PCR, followed by sequencing of HIV-1 pol gene, targeting the protease and reverse transcriptase fragments. HIV-1 diversity was analyzed using the REGA HIV-1 subtyping tool and DRMs were identified using the Calibrated Population Resistance tool. A total of 34 sequences were obtained. The data revealed wide HIV-1 subtypes heterogeneity, with subtype C (38%, 13/34) the most frequent, followed by the subtypes F1 (18%, 6/34), A1 (9%, 3/34), G (9%, 3/34), D (6%, 2/34) and H (3%, 1/34). In addition, recombinants strains were detected, with CRF02_AG (6%, 2/34) the most frequent, followed by CRF37_cpx, F1/C, A1/G and H/G, all with 3% (1/34). A total of 6/34 (18%) of the sequences presented DRMs. The non-nucleoside reverse transcriptase inhibitors presented 15% (5/34) of resistance. Moreover, 1/34 (3%) sequence presented resistance against both non-nucleoside reverse transcriptase inhibitors and nucleoside reverse transcriptase inhibitors, simultaneously. Despite the small sample size, our results suggest the need to update currently used ART regimens. Surveillance of HIV-1 subtypes and DRMs are necessary to understand HIV epidemiology and to guide modification of ART guidelines in Angola.

Klíčová slova:

Antimicrobial resistance – HIV epidemiology – HIV-1 – Human genetics – Pregnancy – Angola


Zdroje

1. United Nations. Political Declaration on HIV and AIDS: On the Fast Track to Accelerating the Fight against HIV and to Ending the AIDS Epidemic by 2030. 2016;17020: 1–26.

2. United Nations Joint Programme on HIV/AIDS (UNAIDS). Unaids Data 2018. 2018.

3. Leitner T, Hahn B, Mullins J, Wolinsky S, Foley B, Apetrei C, et al. HIV Sequence Compendium 2015 Editors. Theor Biol Biophys Los Alamos Natl Lab. 2015.

4. Sharp PM, Hahn BH. Origins of HIV and the AIDS pandemic. Cold Spring Harb Perspect Med. 2011;1: a006841. doi: 10.1101/cshperspect.a006841 22229120

5. Afonso JM, Bello G, Monick GL, Sojka M, Morgado MG. HIV-1 Genetic Diversity and Transmitted Drug Resistance Mutations among Patients from the North, Central and South Regions of Angola. PLoS One. 2012;7: 11. doi: 10.1371/journal.pone.0042996 22952625

6. Bártolo I, Rocha C, Bartolomeu J, Gama A, Marcelino R, Fonseca M, et al. Highly divergent subtypes and new recombinant forms prevail in the HIV/AIDS epidemic in Angola: New insights into the origins of the AIDS pandemic. Infect Genet Evol. 2009;9: 672–682. doi: 10.1016/j.meegid.2008.05.003 18562253

7. Bártolo I, Zakovic S, Martin F, Palladino C, Carvalho P, Camacho R, et al. HIV-1 diversity, transmission dynamics and primary drug resistance in Angola. PLoS One. 2014;9: 1–17. doi: 10.1371/journal.pone.0113626 25479241

8. Castelbranco EPAF, da Silva Souza E, Cavalcanti AMS, Martins AN, de Alencar LCA, Tanuri A. Frequency of Primary Resistance to Antiretroviral Drugs and Genetic Variability of HIV-1 Among Infected Pregnant Women Recently Diagnosed in Luanda-Angola. AIDS Res Hum Retroviruses. 2010;26: 1313–1316. doi: 10.1089/aid.2010.0111 20929349

9. Bártolo I, Epalanga M, Bartolomeu J, Fonseca M, Mendes A, Gama A, et al. High Genetic Diversity of Human Immunodeficiency Virus Type 1 in Angola. AIDS Res Hum Retroviruses. 2005;21: 306–310. doi: 10.1089/aid.2005.21.306 15943573

10. Abecasis A, Paraskevis D, Epalanga M, Fonseca M, Burity F. HIV-1 genetic variants circulation in the North of Angola. 2005;5: 231–237. doi: 10.1016/j.meegid.2004.07.007 15737914

11. Garrido C, Zahonero N, Fernándes D, Serrano D, Silva AR, Ferraria N, et al. Subtype variability, virological response and drug resistance assessed on dried blood spots collected from HIV patients on antiretroviral therapy in Angola. J Antimicrob Chemother. 2008;61: 694–698. doi: 10.1093/jac/dkm515 18218644

12. World Health Organization. The use of antiretroviral drugs for treating and preventing hiv infection. World Heal Organ. 2016.

13. National Institute of Fighting against AIDS. Plano Estratégico Nacional Para o Controlo das Infecções de Transmissão Sexual, VIH e SIDA Instituto Nacional de Luta Contra a Sida. 2006.

14. National Institute of Fighting against AIDS. Normas De Tratamento Antirretroviral. 2015; 159.

15. Ssemwanga D, Lihana RW, Ugoji C, Abimiku A, Nkengasong J, Dakum P, et al. Update on HIV-1 acquired and transmitted drug resistance in Africa. AIDS Rev. 2015;17: 3–20. 25427100

16. Bbosa N, Kaleebu P, Ssemwanga D. HIV subtype diversity worldwide. Curr Opin HIV AIDS. 2019;14: 153–160. doi: 10.1097/COH.0000000000000534 30882484

17. Delatorre E, Silva-de-Jesus C, Couto-Fernandez JC, Pilotto JH, Morgado MG. High HIV-1 Diversity and Prevalence of Transmitted Drug Resistance Among Antiretroviral-Naive HIV-Infected Pregnant Women from Rio de Janeiro, Brazil. AIDS Res Hum Retroviruses. 2017;33: 68–73. doi: 10.1089/AID.2016.0159 27392995

18. Woods CK, Brumme CJ, Liu TF, Chui CKS, Chu AL, Wynhoven B, et al. Automating HIV drug resistance genotyping with RECall, a freely accessible sequence analysis tool. J Clin Microbiol. 2012;50: 1936–1942. doi: 10.1128/JCM.06689-11 22403431

19. Pineda-peña A, Rodrigues N, Imbrechts S, Libin P, Barroso A, Deforche K, et al. Infection, Genetics and Evolution Automated subtyping of HIV-1 genetic sequences for clinical and surveillance purposes : Performance evaluation of the new REGA version 3 and seven other tools. 2013.

20. Saitou N, Nei M. The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees. 1987;4: 406–425.

21. Tamura K, Nei M. Estimation of the Number of Nucleotide Substitutions in the Control Region of Mitochondrial DNA in Humans and. 1993;10.

22. Felsenstein J. Confidence Limits on Phylogenies: an Approach Using the Bootstrap. Int J Org Evol. 1985;39: 783–791. doi: 10.1111/j.1558-5646.1985.tb00420.x 28561359

23. Kumar S, Stecher G, Tamura K, Medicine E. MEGA7 : Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. 2016; 1–11.

24. Lole KS, Bollinger RC, Paranjape RS, Gadkari D, Kulkarni SS, Novak NG, et al. Full-Length Human Immunodeficiency Virus Type 1 Genomes from Subtype C-Infected Seroconverters in India, with Evidence of Intersubtype Recombination. Am Soc Microbiol. 1999;73: 152–160.

25. Bennett DE, Camacho RJ, Otelea D, Kuritzkes DR, Fleury H, Kiuchi M, et al. Drug resistance mutations for surveillance of transmitted HIV-1 drug-resistance: 2009 update. PLoS One. 2009;4. doi: 10.1371/journal.pone.0004724 19266092

26. Liu TF, Shafer RW. Web Resources for HIV Type 1 Genotypic-Resistance Test Interpretation. Clin Infect Dis. 2006;42: 1608–1618. doi: 10.1086/503914 16652319

27. Perrin L, Kaiser L, Yerly S. Travel and the spread of HIV-1 genetic variants. Lancet Infect Dis. 2003;3: 22–27. doi: 10.1016/s1473-3099(03)00484-5 12505029

28. Johnson VA, Calvez V, Günthard HF, Paredes R, Pillay D, Shafer R, et al. 2011 Update of the Drug Resistance Mutations in HIV-1. Top Antivir Med. 2011; 156–164. 22156218

29. Alcaro S, Alteri C, Artese A, Ceccherini-silberstein F, Costa G, Ortuso F, et al. Docking Analysis and Resistance Evaluation of Clinically Relevant Mutations Associated with the HIV-1 Non- nucleoside Reverse Transcriptase Inhibitors Nevirapine, Efavirenz and Etravirine. 2011; 2203–2213. doi: 10.1002/cmdc.201100362 21953939

30. Shahriar R, Rhee S, Liu TF, Fessel WJ, Scarsella A, Towner W, et al. Nonpolymorphic Human Immunodeficiency Virus Type 1 Protease and Reverse Transcriptase Treatment-Selected Mutations. 2009;53: 4869–4878. doi: 10.1128/AAC.00592-09 19721070

31. Rhee S, Taylor J, Fessel WJ, Kaufman D, Towner W, Troia P, et al. HIV-1 Protease Mutations and Protease Inhibitor Cross-Resistance. 2010;54: 4253–4261. doi: 10.1128/AAC.00574-10 20660676

32. Van de Vijver D, Wensing AM, Boucher C, others. The epidemiology of transmission of drug resistant HIV-1. Reviews. 2006;2007: 17–36.

33. Inzaule SC, Hamers RL, Doherty M, Shafer RW, Bertagnolio S, Rinke de Wit TF. Curbing the rise of HIV drug resistance in low-income and middle-income countries: the role of dolutegravir-containing regimens. Lancet Infect Dis. 2019;19: e246–e252. doi: 10.1016/S1473-3099(18)30710-2 30902440


Článek vyšel v časopise

PLOS One


2019 Číslo 11