Treatment of corneal endothelial damage in a rabbit model with a bioengineered graft using human decellularized corneal lamina and cultured human corneal endothelium

Autoři: Francisco Arnalich-Montiel aff001;  Adrian Moratilla aff002;  Sherezade Fuentes-Julián aff002;  Veronica Aparicio aff002;  Marta Cadenas Martin aff002;  Gary Peh aff003;  Jodhbir S. Mehta aff003;  Khadijah Adnan aff003;  Laura Porrua aff001;  Ane Pérez-Sarriegui aff001;  Maria P. De Miguel aff002
Působiště autorů: Ophthalmology Department, Hospital Ramón y Cajal, Madrid, Spain aff001;  Cell Engineering Laboratory, La Paz Hospital Research Institute, iDIPAZ, Madrid, Spain aff002;  Singapore Eye Research Institute, Singapore, Singapore aff003
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225480



We aimed to investigate the functionality of human decellularized stromal laminas seeded with cultured human corneal endothelial cells as a tissue engineered endothelial graft (TEEK) construct to perform endothelial keratoplasty in an animal model of corneal endothelial damage.


Engineered corneal endothelial grafts were constructed by seeding cultured human corneal endothelial cell (hCEC) suspensions onto decellularized human corneal stromal laminas with various coatings. The functionality and survival of these grafts with cultured hCECs was examined in a rabbit model of corneal endothelial damage after central descemetorhexis. Rabbits received laminas with and without hCECs (TEEK and control group, respectively).


hCEC seeding over fibronectin-coated laminas provided an optimal and consistent endothelial cell count density and polygonal shape on the decellularized laminas, showing active pump fuction. Surgery was performed uneventfully as standard Descemet stripping automated endothelial keratoplasty (DSAEK). Corneal transparency gradually recovered in the TEEK group, whereas haze and edema persisted for up to 4 weeks in the controls. Histologic examination showed endothelial cells of human origin covering the posterior surface of the graft in the TEEK group.


Grafting of decellularized stroma carriers re-surfaced with human corneal endothelial cells ex vivo can be a readily translatable method to improve visual quality in corneal endothelial diseases.

Klíčová slova:

Coatings – Cornea – Corneal transplantation – Endothelial cells – Endothelium – Eyes – Rabbits


1. Gain P, Jullienne R, He Z, Aldossary M, Acquart S, Cognasse F, et al. Global survey of corneal transplantation and eye banking. JAMA Ophthalmol. 2016;134: 167–173. doi: 10.1001/jamaophthalmol.2015.4776 26633035

2. Song CD, Garcia-Valenzuela E, Hubbard GB, Aaberg TM. Corneal transplantation. Med Manag Surg Patient A Textb Perioper Med. 2006;379: 700–701. doi: 10.1017/CBO9780511544590.105

3. Proulx S, Brunette I. Methods being developed for preparation, delivery and transplantation of a tissue-engineered corneal endothelium. Exp Eye Res. 2012;95: 68–75. doi: 10.1016/j.exer.2011.06.013 21723281

4. Mimura T, Yamagami S, Amano S. Corneal endothelial regeneration and tissue engineering. Progress in Retinal and Eye Research. 2013. pp. 1–17. doi: 10.1016/j.preteyeres.2013.01.003 23353595

5. Soh YQ, Peh GSL, Mehta JS. Translational issues for human corneal endothelial tissue engineering. J Tissue Eng Regen Med. 2017;11: 2425–2442. doi: 10.1002/term.2131 27109004

6. Møller-Pedersen T, Hartmann U, Ehlers N, Engelmann K. Evaluation of potential organ culture media for eye banking using a human corneal endothelial cell growth assay. Graefe’s Arch Clin Exp Ophthalmol. 2001;239: 778–782. doi: 10.1007/s004170100354 11760040

7. Bednarz J, Doubilei V, Wollnik PCM, Engelmann K. Effect of three different media on serum free culture of donor corneas and isolated human corneal endothelial cells. Br J Ophthalmol. 2001;85: 1416–1420. doi: 10.1136/bjo.85.12.1416 11734511

8. Jäckel T, Knels L, Valtink M, Funk RHW, Engelmann K. Serum-free corneal organ culture medium (SFM) but not conventional minimal essential organ culture medium (MEM) protects human corneal endothelial cells from apoptotic and necrotic cell death. Br J Ophthalmol. 2011;95: 123–130. doi: 10.1136/bjo.2010.183418 20974632

9. Peh GSL, Chng Z, Ang HP, Cheng TYD, Adnan K, Seah XY, et al. Propagation of human corneal endothelial cells: A novel dual media approach. Cell Transplant. 2015;24: 287–304. doi: 10.3727/096368913X675719 24268186

10. Okumura N, Sakamoto Y, Fujii K, Kitano J, Nakano S, Tsujimoto Y, et al. Rho kinase inhibitor enables cell-based therapy for corneal endothelial dysfunction. Sci Rep. 2016;6: 26113. doi: 10.1038/srep26113 27189516

11. Okumura N, Matsumoto D, Fukui Y, Teramoto M, Imai H, Kurosawa T, et al. Feasibility of cell-based therapy combined with descemetorhexis for treating Fuchs endothelial corneal dystrophy in rabbit model. Ljubimov A V., editor. PLoS One. 2018;13: e0191306. doi: 10.1371/journal.pone.0191306 29338061

12. He Z, Forest F, Bernard A, Gauthier AS, Montard R, Peoc’h M, et al. Cutting and decellularization of multiple corneal stromal lamellae for the bioengineering of endothelial grafts. Investig Ophthalmol Vis Sci. 2016;57: 6639–6651. doi: 10.1167/iovs.16-20256 27926756

13. Stuart AJ, Romano V, Virgili G, Shortt AJ. Descemet’s membrane endothelial keratoplasty (DMEK) versus Descemet’s stripping automated endothelial keratoplasty (DSAEK) for corneal endothelial failure. Cochrane Database of Systematic Reviews. 2018. doi: 10.1002/14651858.CD012097.pub2 29940078

14. Soh YQ, Peh GS, Mehta JS. Evolving therapies for Fuchs’ endothelial dystrophy. Regenerative Medicine. 2018. pp. 97–115. doi: 10.2217/rme-2017-0081 29360003

15. Honda N, Mimura T, Usui T, Amano S. Descemet stripping automated endothelial keratoplasty using cultured corneal endothelial cells in a rabbit model. Arch Ophthalmol. 2009;127: 1321–1326. doi: 10.1001/archophthalmol.2009.253 19822849

16. Choi JS, Williams JK, Greven M, Walter KA, Laber PW, Khang G, et al. Bioengineering endothelialized neo-corneas using donor-derived corneal endothelial cells and decellularized corneal stroma. Biomaterials. 2010;31: 6738–6745. doi: 10.1016/j.biomaterials.2010.05.020 20541797

17. Bayyoud T, Thaler S, Hofmann J, Maurus C, Spitzer MS, Bartz-Schmidt KU, et al. Decellularized bovine corneal posterior lamellae as carrier matrix for cultivated human corneal endothelial cells. Curr Eye Res. 2012;37: 179–186. doi: 10.3109/02713683.2011.644382 22335804

18. Alió del Barrio JL, El Zarif M, Azaar A, Makdissy N, Khalil C, Harb W, et al. Corneal Stroma Enhancement With Decellularized Stromal Laminas With or Without Stem Cell Recellularization for Advanced Keratoconus. Am J Ophthalmol. 2018;186: 47–58. doi: 10.1016/j.ajo.2017.10.026 29103962

19. Alio del Barrio JL, Chiesa M, Garagorri N, Garcia-Urquia N, Fernandez-Delgado J, Bataille L, et al. Acellular human corneal matrix sheets seeded with human adipose-derived mesenchymal stem cells integrate functionally in an experimental animal model. Exp Eye Res. 2015;132: 91–100. doi: 10.1016/j.exer.2015.01.020 25625506

20. Van Horn DL, Sendele DD, Seideman S, Buco PJ. Regenerative capacity of the corneal endothelium in rabbit and cat. Investigative Ophthalmology and Visual Science. 1977.

21. Minkowski JS, Bartels SP, Delori FC, Lee SR, Kenyon KR, Neufeld AH. Corneal endothelial function and structure following cryo-injury in the rabbit. Investig Ophthalmol Vis Sci. 1984;25: 1416–1425. Available:

22. Hong Y, Peng R mei, Wang M, Qu H qiang, Hong J. Suture Pull-Through Insertion Techniques for Descemet Stripping Automated Endothelial Keratoplasty in Chinese Phakic Eyes: Outcomes and Complications. PLoS One. 2013;8: e61929. doi: 10.1371/journal.pone.0061929 23626753

23. Fuentes-Julián S, Arnalich-Montiel F, Jaumandreu L, Leal M, Casado A, García-Tuñon I, et al. Adipose-derived mesenchymal stem cell administration does not improve corneal graft survival outcome. PLoS One. 2015;10. doi: 10.1371/journal.pone.0117945 25730319

24. Mills RA, Jones DB, Winkler CR, Wallace GW, Wilhelmus KR. Topical FK-506 prevents experimental corneal allograft rejection. Cornea. 1995;14: 157–160. 7538061

25. Rice AM, Wood JA, Milross CG, Collins CJ, McCarthy NF, Vowels MR. Conditions that enable human hematopoietic stem cell engraftment in all NOD-SCID mice. Transplantation. 2000;69: 927–935. doi: 10.1097/00007890-200003150-00044 10755552

26. López-Iglesias P. Fate of human AMSCs over the short and long term after subcutaneous injection in immunodeficient mice. World J Stem Cells. 2011;3: 53. doi: 10.4252/wjsc.v3.i6.53

27. EBAA. 2016 Eye Banking Statistical Report. Eye Bank Assoc Am. 2017; 1–99.

28. Kimoto M, Shima N, Yamaguchi M, Hiraoka Y, Amano S, Yamagami S. Development of a bioengineered corneal endothelial cell sheet to fit the corneal curvature. Investig Ophthalmol Vis Sci. 2014;55: 2337–2343. doi: 10.1167/iovs.13-13167 24651553

29. Lai JY, Chen KH, Hsiue GH. Tissue-engineered human corneal endothelial cell sheet transplantation in a rabbit model using functional biomaterials. Transplantation. 2007;84: 1222–1232. doi: 10.1097/ 18049106

30. Mimura T, Yamagami S, Yokoo S, Usui T, Tanaka K, Hattori S, et al. Cultured human corneal endothelial cell transplantation with a collagen sheet in a rabbit model. Investig Ophthalmol Vis Sci. 2004;45: 2992–2997. doi: 10.1167/iovs.03-1174 15326112

31. Rizwan M, Peh GSL, Ang HP, Lwin NC, Adnan K, Mehta JS, et al. Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications. Biomaterials. 2017;120: 139–154. doi: 10.1016/j.biomaterials.2016.12.026 28061402

32. Lange TM, Wood TO, McLaughlin BJ. Corneal endothelial cell transplantation using Descemet’s membrane as a carrier. J Cataract Refract Surg. 1993;19: 232–235. doi: 10.1016/s0886-3350(13)80947-9 8487165

33. Diao YM, Hong J. Feasibility and safety of porcine Descemet’s membrane as a carrier for generating tissue-engineered corneal endothelium. Mol Med Rep. 2015;12: 1929–1934. doi: 10.3892/mmr.2015.3665 25937160

34. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011. pp. 3233–3243. doi: 10.1016/j.biomaterials.2011.01.057 21296410

35. Peh GSL, Ang HP, Lwin CN, Adnan K, George BL, Seah XY, et al. Regulatory Compliant Tissue-Engineered Human Corneal Endothelial Grafts Restore Corneal Function of Rabbits with Bullous Keratopathy. Sci Rep. 2017;7. doi: 10.1038/s41598-017-14723-z 29074873

36. Gosselin EA, Torregrosa T, Ghezzi CE, Mendelsohn AC, Gomes R, Funderburgh JL, et al. Multi-layered silk film coculture system for human corneal epithelial and stromal stem cells. J Tissue Eng Regen Med. 2018;12: 285–295. doi: 10.1002/term.2499 28600807

37. Alaminos M, Sánchez-Quevedo MDC, Muñoz-Ávila JI, Serrano D, Medialdea S, Carreras I, et al. Construction of a complete rabbit cornea substitute using a fibrin-agarose scaffold. Investig Ophthalmol Vis Sci. 2006;47: 3311–3317. doi: 10.1167/iovs.05-1647 16877396

Článek vyšel v časopise


2019 Číslo 11