#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Student engagement and wellbeing over time at a higher education institution


Autoři: Chris A. Boulton aff001;  Emily Hughes aff002;  Carmel Kent aff001;  Joanne R. Smith aff002;  Hywel T. P. Williams aff001
Působiště autorů: Computer Science, University of Exeter, Exeter, United Kingdom aff001;  School of Psychology, University of Exeter, Exeter, United Kingdom aff002
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0225770

Souhrn

Student engagement is an important factor for learning outcomes in higher education. Engagement with learning at campus-based higher education institutions is difficult to quantify due to the variety of forms that engagement might take (e.g. lecture attendance, self-study, usage of online/digital systems). Meanwhile, there are increasing concerns about student wellbeing within higher education, but the relationship between engagement and wellbeing is not well understood. Here we analyse results from a longitudinal survey of undergraduate students at a campus-based university in the UK, aiming to understand how engagement and wellbeing vary dynamically during an academic term. The survey included multiple dimensions of student engagement and wellbeing, with a deliberate focus on self-report measures to capture students’ subjective experience. The results show a wide range of engagement with different systems and study activities, giving a broad view of student learning behaviour over time. Engagement and wellbeing vary during the term, with clear behavioural changes caused by assessments. Results indicate a positive interaction between engagement and happiness, with an unexpected negative relationship between engagement and academic outcomes. This study provides important insights into subjective aspects of the student experience and provides a contrast to the increasing focus on analysing educational processes using digital records.

Klíčová slova:

Behavior – Happiness – Human learning – Learning – Lectures – Motivation – Surveys – Teaching methods


Zdroje

1. Kahn PE. Theorising student engagement in higher education. British Educational Research Journal. 2014;40(6):1005–18.

2. Krause KL, Coates H. Students’ engagement in first‐year university. Assessment & Evaluation in Higher Education. 2008;33(5):493–505.

3. Zhu E. Interaction and cognitive engagement: An analysis of four asynchronous online discussions. Instructional Science. 2006;34(6):451.

4. Kuzilek J, Hlosta M, Herrmannova D, Zdrahal Z, Wolff A. OU Analyse: Analysing at-risk students at The Open University. Learning Analytics Review. 2015;LAK15(1):1–16.

5. Cerezo R, Sánchez-Santillán M, Paule-Ruiz MP, Núñez JC. Students' LMS interaction patterns and their relationship with achievement: A case study in higher education. Computers & Education. 2016;96 : 42–54.

6. Pascarella ET, Seifert TA, Blaich C. How Effective are the NSSE Benchmarks in Predicting Important Educational Outcomes? Change: The Magazine of Higher Learning. 2010;42(1):16–22.

7. Kuh GD, Cruce TM, Shoup R, Kinzie J, Gonyea RM. Unmasking the Effects of Student Engagement on First-Year College Grades and Persistence. The Journal of Higher Education. 2008;79(5):540–63.

8. Boulton CA, Kent C, Williams HTP. Virtual learning environment engagement and learning outcomes at a ‘bricks-and-mortar’ university. Computers & Education. 2018;126 : 129–42.

9. Agudo-Peregrina ÁF, Iglesias-Pradas S, Conde-González MÁ, Hernández-García Á. Can we predict success from log data in VLEs? Classification of interactions for learning analytics and their relation with performance in VLE-supported F2F and online learning. Computers in Human Behavior. 2014;31 : 542–50.

10. Rienties B, Toetenel L. The impact of learning design on student behaviour, satisfaction and performance: A cross-institutional comparison across 151 modules. Computers in Human Behavior. 2016;60 : 333–41.

11. Joksimović S, Gašević D, Loughin TM, Kovanović V, Hatala M. Learning at distance: Effects of interaction traces on academic achievement. Computers & Education. 2015;87 : 204–17.

12. Na KS, Tasir Z, editors. Identifying at-risk students in online learning by analysing learning behaviour: A systematic review. 2017 IEEE Conference on Big Data and Analytics (ICBDA); 2017 16–17 Nov. 2017.

13. Cambruzzi W, Rigo SJ, Barbosa JLV. Dropout Prediction and Reduction in Distance Education Courses with the Learning Analytics Multitrail Approach. j-jucs. 2015;21(1):23–47.

14. Wang R, Chen F, Chen Z, Li T, Harari G, Tignor S, et al. StudentLife: assessing mental health, academic performance and behavioral trends of college students using smartphones. Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing; Seattle, Washington. 2632054: ACM; 2014. p. 3–14.

15. Kent C, Boulton CA, Williams HTP. Towards Measurement of the Relationship between Student Engagement and Learning Outcomes at a Bricks-and-Mortar University. Sixth Multimodal Learning Analytics (MMLA) Workshop and the Second Cross-LAK Workshop co-located with 7th International Learning Analytics and Knowledge Conference (LAK 2017); Vancouver, Canada2017.

16. Wang R, Harari G, Hao P, Zhou X, Campbell AT. SmartGPA: how smartphones can assess and predict academic performance of college students. Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing; Osaka, Japan. 2804251: ACM; 2015. p. 295–306.

17. Cochran JD, Campbell SM, Baker HM, Leeds EM. The Role of Student Characteristics in Predicting Retention in Online Courses. Research in Higher Education. 2014;55(1):27–48.

18. de Freitas S, Gibson D, Du Plessis C, Halloran P, Williams E, Ambrose M, et al. Foundations of dynamic learning analytics: Using university student data to increase retention. British Journal of Educational Technology. 2015;46(6):1175–88.

19. Dekker GW, Pechenizkiy M, Vleeshouwers JM. Predicting Students Drop Out: A Case Study. 2nd Educational Data Mining; Cordoba, Spain: ERIC; 2009.

20. Romero C, Ventura S. Data mining in education. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2013;3(1):12–27.

21. Borden VMH, Coates H. Learning Analytics as a Counterpart to Surveys of Student Experience. New Directions for Higher Education. 2017;2017(179):89–102.

22. Sønderlund A, Hughes E, Smith J. The efficacy of learning analytics interventions in higher education: A systematic review. British Journal of Educational Technology. 2019;50(5):2594–618.

23. Sclater N, Peasgood A, Mullan J. Learning Analytics in Higher Education: A review of UK and international practice. Joint Information of Systems Committee (JISC). CC by 4.0 Licence: UK; 2016.

24. Sclater N, Mullan J. Learning analytics and student success: Assessing the evidence. Joint Information of Systems Committee (JISC). CC by 4.0 License: UK; 2016.

25. Viberg O, Hatakka M, Bälter O, Mavroudi A. The current landscape of learning analytics in higher education. Computers in Human Behavior. 2018;89 : 98–110.

26. Shum SB, Crick RD, editors. Learning dispositions and transferable competencies: pedagogy, modelling and learning analytics. Proceedings of the 2nd international conference on learning analytics and knowledge; 2012: ACM.

27. Tempelaar DT, Rienties B, Giesbers B. In search for the most informative data for feedback generation: Learning analytics in a data-rich context. Computers in Human Behavior. 2015;47 : 157–67.

28. Tempelaar D, Rienties B, Mittelmeier J, Nguyen Q. Student profiling in a dispositional learning analytics application using formative assessment. Computers in Human Behavior. 2018;78 : 408–20.

29. Tempelaar D, Rienties B, Nguyen Q. A multi-modal study into students’ timing and learning regulation: time is ticking. Interactive Technology and Smart Education. 2018;15(4):298–313.

30. D’Mello S, Graesser A. Dynamics of affective states during complex learning. Learning and Instruction. 2012;22(2):145–57.

31. Pardos ZA, Baker RS, San Pedro MO, Gowda SM, Gowda SM. Affective States and State Tests: Investigating How Affect and Engagement during the School Year Predict End-of-Year Learning Outcomes. Journal of Learning Analytics. 2014;1(1):107–28.

32. Saeb S, Lattie EG, Schueller SM, Kording KP, Mohr DC. The relationship between mobile phone location sensor data and depressive symptom severity. PeerJ. 2016;4:e2537. doi: 10.7717/peerj.2537 28344895

33. Deci EL, Ryan RM. Hedonia, eudaimonia, and well-being: an introduction. Journal of Happiness Studies. 2008;9(1):1–11.

34. Diener E, Heintzelman SJ, Kushlev K, Tay L, Wirtz D, Lutes LD, et al. Findings all psychologists should know from the new science on subjective well-being. Canadian Psychology/Psychologie canadienne. 2017;58(2):87–104.

35. Rinn AN. Trends Among Honors College Students: An Analysis by Year in School. Journal of Secondary Gifted Education. 2005;16(4):157–67.

36. Plominski AP, Burns LR. An Investigation of Student Psychological Wellbeing: Honors Versus Nonhonors Undergraduate Education. Journal of Advanced Academics. 2018;29(1):5–28.

37. Pietarinen J, Soini T, Pyhältö K. Students’ emotional and cognitive engagement as the determinants of well-being and achievement in school. International Journal of Educational Research. 2014;67 : 40–51.

38. Thorley C. Not By Degrees: Not by degrees: Improving student mental health in the UK’s universities. IPPR; 2017.

39. Houghton A-M, Anderson J. Embedding mental wellbeing in the curriculum: maximising success in higher education. Higher Education Academy,(forthcoming). 2017;68.

40. Lam SF, Jimerson SR. Exploring student engagement in schools internationally: Consultation paper. Chicago, IL: International School Psychologist Association; 2008.

41. Herodotou C, Rienties B, Boroowa A, Zdrahal Z, Hlosta M. A large-scale implementation of predictive learning analytics in higher education: the teachers’ role and perspective. Educational Technology Research and Development. 2019;67(5):1273–306.

42. Lawther S, Foster E, Mutton J, Kerrigan M. Can the Use of Learning Analytics Encourage Positive Student Behaviours? In: Janes G, Nutt D, Taylor P, editors. Student Behaviour and Positive Learning Cultures: SEDA; 2016. p. 13–21.

43. Richardson JTE. The role of response biases in the relationship between students’ perceptions of their courses and their approaches to studying in higher education. British Educational Research Journal. 2012;38(3):399–418.

44. Gasevic D, Jovanovic J, Pardo A, Dawson S. Detecting learning strategies with analytics: Links with self-reported measures and academic performance. Journal of Learning Analytics. 2017;4(2):113–28-–28.

45. Winne PH, Jamieson-Noel D. Exploring students’ calibration of self reports about study tactics and achievement. Contemporary Educational Psychology. 2002;27(4):551–72.

46. Zhou M, Winne PH. Modeling academic achievement by self-reported versus traced goal orientation. Learning and Instruction. 2012;22(6):413–9.


Článek vyšel v časopise

PLOS One


2019 Číslo 11
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

BONE ACADEMY 2025
nový kurz
Autoři: prof. MUDr. Pavel Horák, CSc., doc. MUDr. Ludmila Brunerová, Ph.D, doc. MUDr. Václav Vyskočil, Ph.D., prim. MUDr. Richard Pikner, Ph.D., MUDr. Olga Růžičková, MUDr. Jan Rosa, prof. MUDr. Vladimír Palička, CSc., Dr.h.c.

Cesta pacienta nejen s SMA do nervosvalového centra
Autoři: MUDr. Jana Junkerová, MUDr. Lenka Juříková

Svět praktické medicíny 2/2025 (znalostní test z časopisu)

Eozinofilní zánět a remodelace
Autoři: MUDr. Lucie Heribanová

Hypertrofická kardiomyopatie: Moderní přístupy v diagnostice a léčbě
Autoři: doc. MUDr. David Zemánek, Ph.D., MUDr. Anna Chaloupka, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#