A robust multi-objective optimization framework to capture both cellular and intercellular properties in cardiac cellular model tuning: Analyzing different regions of membrane resistance profile in parameter fitting


Autoři: Elnaz Pouranbarani aff001;  Rodrigo Weber dos Santos aff002;  Anders Nygren aff001
Působiště autorů: Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada aff001;  Department of Computer Science and the Graduate Program of Computational Modeling, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil aff002
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225245

Souhrn

Mathematical models of cardiac cells have been established to broaden understanding of cardiac function. In the process of developing electrophysiological models for cardiac myocytes, precise parameter tuning is a crucial step. The membrane resistance (Rm) is an essential feature obtained from cardiac myocytes. This feature reflects intercellular coupling and affects important phenomena, such as conduction velocity, and early after-depolarizations, but it is often overlooked during the phase of parameter fitting. Thus, the traditional parameter fitting that only includes action potential (AP) waveform may yield incorrect values for Rm. In this paper, a novel multi-objective parameter fitting formulation is proposed and tested that includes different regions of the Rm profile as additional objective functions for optimization. As Rm depends on the transmembrane voltage (Vm) and exhibits singularities for some specific values of Vm, analyses are conducted to carefully select the regions of interest for the proper characterization of Rm. Non-dominated sorting genetic algorithm II is utilized to solve the proposed multi-objective optimization problem. To verify the efficacy of the proposed problem formulation, case studies and comparisons are carried out using multiple models of human cardiac ventricular cells. Results demonstrate Rm is correctly reproduced by the tuned cell models after considering the curve of Rm obtained from the late phase of repolarization and Rm value calculated in the rest phase as additional objectives. However, relative deterioration of the AP fit is observed, demonstrating trade-off among the objectives. This framework can be useful for a wide range of applications, including the parameters fitting phase of the cardiac cell model development and investigation of normal and pathological scenarios in which reproducing both cellular and intercellular properties are of great importance.

Klíčová slova:

Action potentials – Curve fitting – Interpolation – Mathematical models – Optimization – Peak values – Simulation and modeling


Zdroje

1. Davies MR, Wang K, Mirams GR, Caruso A, Noble D, Walz A, et al. Recent developments in using mechanistic cardiac modelling for drug safety evaluation. Drug Discovery Today. 2016 Jun 1;21(6):924–38. doi: 10.1016/j.drudis.2016.02.003 26891981

2. Krogh‐Madsen T, Sobie EA, Christini DJ. Improving cardiomyocyte model fidelity and utility via dynamic electrophysiology protocols and optimization algorithms. The Journal of Physiology. 2016 May 1;594(9):2525–36. doi: 10.1113/JP270618 26661516

3. J Kaur J, Nygren A, Vigmond EJ. Fitting membrane resistance along with action potential shape in cardiac myocytes improves convergence: application of a multi-objective parallel genetic algorithm. PLoS One. 2014 Sep 24;9(9):e107984. doi: 10.1371/journal.pone.0107984 25250956

4. Bueno-Orovio A, Cherry EM, Fenton FH. Minimal model for human ventricular action potentials in tissue. Journal of Theoretical Biology. 2008 Aug 7;253(3):544–60. doi: 10.1016/j.jtbi.2008.03.029 18495166

5. Dokos S, Lovell NH. Parameter estimation in cardiac ionic models. Progress in Biophysics and Molecular Biology. 2004 Jun 1;85(2–3):407–31. doi: 10.1016/j.pbiomolbio.2004.02.002 15142755

6. Syed Z, Vigmond E, Nattel S, Leon LJ. Atrial cell action potential parameter fitting using genetic algorithms. Medical and Biological Engineering and Computing. 2005 Oct 1;43(5):561–71. doi: 10.1007/bf02351029 16411628

7. Chen F, Chu A, Yang X, Lei Y, Chu J. Identification of the parameters of the Beeler–Reuter ionic equation with a partially perturbed particle swarm optimization. IEEE Transactions on Biomedical Engineering. 2012 Aug 30;59(12):3412–21. doi: 10.1109/TBME.2012.2216265 22955867

8. Loewe A, Wilhelms M, Schmid J, Krause MJ, Fischer F, Thomas D, et al. Parameter estimation of ion current formulations requires hybrid optimization approach to be both accurate and reliable. Frontiers in Bioengineering and Biotechnology. 2016 Jan 13;3:209. doi: 10.3389/fbioe.2015.00209 26793704

9. Clayton RH, Bernus O, Cherry EM, Dierckx H, Fenton FH, Mirabella L, et al. Models of cardiac tissue electrophysiology: progress, challenges and open questions. Progress in Biophysics and Molecular Biology. 2011 Jan 1;104(1–3):22–48. doi: 10.1016/j.pbiomolbio.2010.05.008 20553746

10. Sarkar AX, Sobie EA. Regression analysis for constraining free parameters in electrophysiological models of cardiac cells. PLoS Computational Biology. 2010 Sep 2;6(9):e1000914. doi: 10.1371/journal.pcbi.1000914 20824123

11. Zaniboni M, Riva I, Cacciani F, Groppi M. How different two almost identical action potentials can be: a model study on cardiac repolarization. Mathematical Biosciences. 2010 Nov 1;228(1):56–70. doi: 10.1016/j.mbs.2010.08.007 20801131

12. Kléber AG, Rudy Y. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiological Reviews. 2004 Apr;84(2):431–88. doi: 10.1152/physrev.00025.2003 15044680

13. Spitzer KW, Pollard AE, Yang L, Zaniboni M, Cordeiro JM, Huelsing DJ. Cell‐to‐cell electrical interactions during early and late repolarization. Journal of Cardiovascular Electrophysiology. 2006 May;17:S8–14. doi: 10.1111/j.1540-8167.2006.00379.x 16686687

14. Zaniboni M, Pollard AE, Yang L, Spitzer KW. Beat-to-beat repolarization variability in ventricular myocytes and its suppression by electrical coupling. American Journal of Physiology Heart and Circulatory Physiology. 2000 Mar 1;278(3):H677–87. doi: 10.1152/ajpheart.2000.278.3.H677 10710334

15. Weidmann S. Effect of current flow on the membrane potential of cardiac muscle. The Journal of Physiology. 1951 Oct 29;115(2):227–36. doi: 10.1113/jphysiol.1951.sp004667 14898488

16. Trenor B, Cardona K, Saiz J, Noble D, Giles W. Cardiac action potential repolarization revisited: early repolarization shows all‐or‐none behaviour. The Journal of Physiology. 2017 Nov 1;595(21):6599–612. doi: 10.1113/JP273651 28815597

17. Zaniboni M. 3D current–voltage–time surfaces unveil critical repolarization differences underlying similar cardiac action potentials: A model study. Mathematical Biosciences. 2011 Oct 1;233(2):98–110. doi: 10.1016/j.mbs.2011.06.008 21781977

18. Zaniboni M. Heterogeneity of intrinsic repolarization properties within the human heart: new insights from simulated three-dimensional current surfaces. IEEE Transactions on Biomedical Engineering. 2012 Jun 15;59(8):2372–80. doi: 10.1109/TBME.2012.2204880 22717503

19. Zaniboni M. Late phase of repolarization is autoregenerative and scales linearly with action potential duration in mammals ventricular myocytes: a model study. IEEE Transactions on Biomedical Engineering. 2011 Oct 10;59(1):226–33. doi: 10.1109/TBME.2011.2170987 21990326

20. Noble D, Hall AE. The conditions for initiating “all-or-nothing” repolarization in cardiac muscle. Biophysical Journal. 1963 Jul 1;3(4):261–74. doi: 10.1016/s0006-3495(63)86820-4 19431326

21. Yang PC, Song Y, Giles WR, Horvath B, Chen‐Izu Y, Belardinelli L, et al. A computational modelling approach combined with cellular electrophysiology data provides insights into the therapeutic benefit of targeting the late Na+ current. The Journal of Physiology. 2015 Mar 15;593(6):1429–42. doi: 10.1113/jphysiol.2014.279554 25545172

22. King JH, Huang CL, Fraser JA. Determinants of myocardial conduction velocity: implications for arrhythmogenesis. Frontiers in Physiology. 2013 Jun 28;4:154. doi: 10.3389/fphys.2013.00154 23825462

23. Nygren A, Giles WR. Mathematical simulation of slowing of cardiac conduction velocity by elevated extracellular [K+] in a human atrial strand. Annals of Biomedical Engineering. 2000 Aug 1;28(8):951–7. doi: 10.1114/1.1308489 11144680

24. Trenor B, Cardona K, Romero L, Gomez JF, Saiz J, Rajamani S, et al. Pro-arrhythmic effects of low plasma [K+] in human ventricle: an illustrated review. Trends in Cardiovascular Medicine. 2018 May 1;28(4):233–42. doi: 10.1016/j.tcm.2017.11.002 29203397

25. Ten Tusscher KH, Noble D, Noble PJ, Panfilov AV. A model for human ventricular tissue. American Journal of Physiology Heart and Circulatory Physiology. 2004 Apr;286(4):H1573–89. doi: 10.1152/ajpheart.00794.2003 14656705

26. Iyer V, Mazhari R, Winslow RL. A computational model of the human left-ventricular epicardial myocyte. Biophysical Journal. 2004 Sep 1;87(3):1507–25. doi: 10.1529/biophysj.104.043299 15345532

27. Available from: https://www.mathworks.com/downloads/

28. O'Hara T, Virág L, Varró A, Rudy Y. Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Computational Biology. 2011 May 26;7(5):e1002061. doi: 10.1371/journal.pcbi.1002061 21637795

29. Deb K. Multi-objective optimization using evolutionary algorithms. John Wiley & Sons; 2001 Jul

30. Cheshmehgaz HR, Haron H, Sharifi A. The review of multiple evolutionary searches and multi-objective evolutionary algorithms. Artificial Intelligence Review. 2015 Mar 1;43(3):311–43.

31. Tian Y, Cheng R, Zhang X, Jin Y. PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]. IEEE Computational Intelligence Magazine. 2017 Oct 11;12(4):73–87.

32. Boada Y, Reynoso-Meza G, Picó J, Vignoni A. Multi-objective optimization framework to obtain model-based guidelines for tuning biological synthetic devices: an adaptive network case. BMC Systems Biology. 2016 Dec;10(1):27.

33. Boada Y, Vignoni A, Picó J. Multiobjective Identification of a Feedback Synthetic Gene Circuit. IEEE Transactions on Control Systems Technology. 2019 Jan 3.

34. Cedersund G, Samuelsson O, Ball G, Tegnér J, Gomez-Cabrero D. Optimization in biology parameter estimation and the associated optimization problem. Uncertainty in Biology. 2016: 177–197.

35. Deb K, Pratap A, Agarwal S, Meyarivan TA. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation. 2002 Aug 7;6(2):182–97.

36. Sivasubramani S, Swarup KS. Multi-objective harmony search algorithm for optimal power flow problem. International Journal of Electrical Power & Energy Systems. 2011 Mar 1;33(3):745–52.

37. Giudicessi JR, Ackerman MJ. Potassium-channel mutations and cardiac arrhythmias-diagnosis and therapy. Nature Reviews Cardiology. 2012 Jun;9(6):319–32. doi: 10.1038/nrcardio.2012.3 22290238

38. Lawson BA, Drovandi CC, Cusimano N, Burrage P, Rodriguez B, Burrage K. Unlocking data sets by calibrating populations of models to data density: A study in atrial electrophysiology. Science Advances. 2018 Jan 1;4(1):e1701676. doi: 10.1126/sciadv.1701676 29349296


Článek vyšel v časopise

PLOS One


2019 Číslo 11