Calreticulin regulates vascular endothelial growth factor-A mRNA stability in gastric cancer cells


Autoři: Po-Chu Lee aff001;  Jui-Chung Chiang aff004;  Chih-Yu Chen aff004;  Yin-Chieh Chien aff004;  Wei-Min Chen aff004;  Chin-Wei Huang aff004;  Wen-Chin Weng aff005;  Chia-I Chen aff002;  Po-Huang Lee aff002;  Chiung-Nien Chen aff002;  Hsinyu Lee aff004
Působiště autorů: Department of Traumatology, National Taiwan University Hospital, Taipei, Taiwan aff001;  Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan aff002;  Graduate Institutes of Clinical Medicine, National Taiwan University, Taipei, Taiwan aff003;  Department of Life Science, National Taiwan University, Taipei, Taiwan aff004;  Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan aff005;  Department of Pediatrics, National Taiwan University, Taipei, Taiwan aff006;  Department of Pediatric Neurology, National Taiwan University Children’s Hospital, Taipei, Taiwan aff007;  Department of Surgery, E-DA Hospital, Kaohsiung, Taiwan aff008;  Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan aff009;  Angiogenesis Research Center, National Taiwan University, Taipei, Taiwan aff010;  Research Center for Developmental Biology, National Taiwan University, Taipei, Taiwan aff011;  Regenerative Medicine and Center for Biotechnology, National Taiwan University, Taipei, Taiwan aff012
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225107

Souhrn

Calreticulin (CRT) and vascular endothelial growth factor-A (VEGF-A) are crucial for angiogenesis, and mediate multiple malignant behaviors in gastric cancer. In this study, we report that CRT is positively correlated with VEGF-A in gastric cancer patients. Moreover, high expressions of both CRT and VEGF-A are markedly associated with the pathological stage, progression, and poor prognosis in the patients. Therefore, we sought to elucidate the mechanism by which CRT affects VEGF-A in gastric cancer. Firstly, we demonstrate the novel finding that knockdown of CRT reduced VEGF-A mRNA stability in two gastric cancer cell lines, AGS and MKN45. The AU-Rich element (ARE) is believed to play a crucial role in the maintenance of VEGF-A mRNA stability. Luciferase reporter assay shows that knockdown of CRT significantly decreased the activity of renilla luciferase with VEGF-A ARE sequence. Additionally, competition results from RNA-binding/electrophoretic mobility shift assay indicate that CRT forms an RNA-protein complex with the VEGF-A mRNA by binding to the ARE. In addition, the proliferation rate of human umbilical vein endothelial cells (HUVEC) was significantly reduced when treated with conditioned medium from CRT knockdown cells; this was rescued by exogenous VEGF-A recombinant protein. Our results demonstrate that CRT is involved in VEGF-A ARE binding protein complexes to stabilize VEGF-A mRNA, thereby promoting the angiogenesis, and progression of gastric cancer.

Klíčová slova:

Angiogenesis – Gastric cancer – Immunoprecipitation – Luciferase – Messenger RNA – Metastasis – RNA extraction – RNA-binding proteins


Zdroje

1. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30. doi: 10.3322/caac.21387 28055103.

2. Chen CN, Chang CC, Su TE, Hsu WM, Jeng YM, Ho MC, et al. Identification of calreticulin as a prognosis marker and angiogenic regulator in human gastric cancer. Ann Surg Oncol. 2009;16(2):524–33. doi: 10.1245/s10434-008-0243-1 19050968.

3. Zamanian M, Veerakumarasivam A, Abdullah S, Rosli R. Calreticulin and cancer. Pathol Oncol Res. 2013;19(2):149–54. doi: 10.1007/s12253-012-9600-2 23392843.

4. Lwin ZM, Guo C, Salim A, Yip GW, Chew FT, Nan J, et al. Clinicopathological significance of calreticulin in breast invasive ductal carcinoma. Mod Pathol. 2010;23(12):1559–66. doi: 10.1038/modpathol.2010.173 20834237.

5. Ding H, Hong C, Wang Y, Liu J, Zhang N, Shen C, et al. Calreticulin promotes angiogenesis via activating nitric oxide signalling pathway in rheumatoid arthritis. Clin Exp Immunol. 2014;178(2):236–44. doi: 10.1111/cei.12411 24988887; PubMed Central PMCID: PMC4233373.

6. Weng WC, Lin KH, Wu PY, Lu YC, Weng YC, Wang BJ, et al. Calreticulin Regulates VEGF-A in Neuroblastoma Cells. Mol Neurobiol. 2015;52(1):758–70. doi: 10.1007/s12035-014-8901-8 25288151.

7. Lu YC, Weng WC, Lee H. Functional roles of calreticulin in cancer biology. Biomed Res Int. 2015;2015:526524. doi: 10.1155/2015/526524 25918716; PubMed Central PMCID: PMC4396016.

8. Shibuya M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and Pro-Angiogenic Therapies. Genes Cancer. 2011;2(12):1097–105. doi: 10.1177/1947601911423031 22866201; PubMed Central PMCID: PMC3411125.

9. Liu DH, Zhang XY, Fan DM, Huang YX, Zhang JS, Huang WQ, et al. Expression of vascular endothelial growth factor and its role in oncogenesis of human gastric carcinoma. World J Gastroenterol. 2001;7(4):500–5. doi: 10.3748/wjg.v7.i4.500 11819817; PubMed Central PMCID: PMC4688661.

10. Mimori K, Fukagawa T, Kosaka Y, Kita Y, Ishikawa K, Etoh T, et al. Hematogenous metastasis in gastric cancer requires isolated tumor cells and expression of vascular endothelial growth factor receptor-1. Clin Cancer Res. 2008;14(9):2609–16. doi: 10.1158/1078-0432.CCR-07-4354 18451223.

11. Lee J, Lee J, Yu H, Choi K, Choi C. Differential dependency of human cancer cells on vascular endothelial growth factor-mediated autocrine growth and survival. Cancer Lett. 2011;309(2):145–50. doi: 10.1016/j.canlet.2011.05.026 21683519.

12. Lee J, Ku T, Yu H, Chong K, Ryu SW, Choi K, et al. Blockade of VEGF-A suppresses tumor growth via inhibition of autocrine signaling through FAK and AKT. Cancer Lett. 2012;318(2):221–5. doi: 10.1016/j.canlet.2011.12.014 22182449.

13. Wu X, Brewer G. The regulation of mRNA stability in mammalian cells: 2.0. Gene. 2012;500(1):10–21. doi: 10.1016/j.gene.2012.03.021 22452843; PubMed Central PMCID: PMC3340483.

14. Chen CY, Shyu AB. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci. 1995;20(11):465–70. doi: 10.1016/s0968-0004(00)89102-1 8578590.

15. Khabar KS. Post-transcriptional control during chronic inflammation and cancer: a focus on AU-rich elements. Cell Mol Life Sci. 2010;67(17):2937–55. doi: 10.1007/s00018-010-0383-x 20495997; PubMed Central PMCID: PMC2921490.

16. Arcondeguy T, Lacazette E, Millevoi S, Prats H, Touriol C. VEGF-A mRNA processing, stability and translation: a paradigm for intricate regulation of gene expression at the post-transcriptional level. Nucleic Acids Res. 2013;41(17):7997–8010. doi: 10.1093/nar/gkt539 23851566; PubMed Central PMCID: PMC3783158.

17. Levy AP. Hypoxic regulation of VEGF mRNA stability by RNA-binding proteins. Trends Cardiovasc Med. 1998;8(6):246–50. 14987559.

18. Lee HH, Son YJ, Lee WH, Park YW, Chae SW, Cho WJ, et al. Tristetraprolin regulates expression of VEGF and tumorigenesis in human colon cancer. Int J Cancer. 2010;126(8):1817–27. doi: 10.1002/ijc.24847 19697322.

19. Kishor A, Tandukar B, Ly YV, Toth EA, Suarez Y, Brewer G, et al. Hsp70 is a novel posttranscriptional regulator of gene expression that binds and stabilizes selected mRNAs containing AU-rich elements. Mol Cell Biol. 2013;33(1):71–84. doi: 10.1128/MCB.01275-12 23109422; PubMed Central PMCID: PMC3536313.

20. Gratacos FM, Brewer G. The role of AUF1 in regulated mRNA decay. Wiley Interdiscip Rev RNA. 2010;1(3):457–73. doi: 10.1002/wrna.26 21956942; PubMed Central PMCID: PMC3608466.

21. Nickenig G, Michaelsen F, Muller C, Berger A, Vogel T, Sachinidis A, et al. Destabilization of AT(1) receptor mRNA by calreticulin. Circ Res. 2002;90(1):53–8. doi: 10.1161/hh0102.102503 11786518.

22. Totary-Jain H, Naveh-Many T, Riahi Y, Kaiser N, Eckel J, Sasson S. Calreticulin destabilizes glucose transporter-1 mRNA in vascular endothelial and smooth muscle cells under high-glucose conditions. Circ Res. 2005;97(10):1001–8. doi: 10.1161/01.RES.0000189260.46084.e5 16210549.

23. Lu YC, Chen CN, Wang B, Hsu WM, Chen ST, Chang KJ, et al. Changes in tumor growth and metastatic capacities of J82 human bladder cancer cells suppressed by down-regulation of calreticulin expression. Am J Pathol. 2011;179(3):1425–33. doi: 10.1016/j.ajpath.2011.05.015 21723245; PubMed Central PMCID: PMC3157280.

24. Lu YC, Chen CN, Chu CY, Lu J, Wang BJ, Chen CH, et al. Calreticulin activates beta1 integrin via fucosylation by fucosyltransferase 1 in J82 human bladder cancer cells. Biochem J. 2014;460(1):69–78. doi: 10.1042/BJ20131424 24593306.

25. Hsia K, Yang MJ, Chen WM, Yao CL, Lin CH, Loong CC, et al. Sphingosine-1-phosphate improves endothelialization with reduction of thrombosis in recellularized human umbilical vein graft by inhibiting syndecan-1 shedding in vitro. Acta Biomater. 2017;51:341–50. Epub 2017/01/23. doi: 10.1016/j.actbio.2017.01.050 28110073.

26. Tseng CW, Lin CC, Chen CN, Huang HC, Juan HF. Integrative network analysis reveals active microRNAs and their functions in gastric cancer. BMC Syst Biol. 2011;5:99. Epub 2011/06/28. doi: 10.1186/1752-0509-5-99 21703006; PubMed Central PMCID: PMC3142228.

27. Washington K. 7th edition of the AJCC cancer staging manual: stomach. Ann Surg Oncol. 2010;17(12):3077–9. Epub 2010/10/01. doi: 10.1245/s10434-010-1362-z 20882416.

28. Chang SH, Lu YC, Li X, Hsieh WY, Xiong Y, Ghosh M, et al. Antagonistic function of the RNA-binding protein HuR and miR-200b in post-transcriptional regulation of vascular endothelial growth factor-A expression and angiogenesis. J Biol Chem. 2013;288(7):4908–21. doi: 10.1074/jbc.M112.423871 23223443; PubMed Central PMCID: PMC3576095.

29. Beelman CA, Parker R. Degradation of mRNA in eukaryotes. Cell. 1995;81(2):179–83. doi: 10.1016/0092-8674(95)90326-7 7736570.

30. Xu N, Chen CY, Shyu AB. Modulation of the fate of cytoplasmic mRNA by AU-rich elements: key sequence features controlling mRNA deadenylation and decay. Mol Cell Biol. 1997;17(8):4611–21. doi: 10.1128/mcb.17.8.4611 9234718; PubMed Central PMCID: PMC232314.

31. Barreau C, Paillard L, Osborne HB. AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res. 2005;33(22):7138–50. doi: 10.1093/nar/gki1012 16391004; PubMed Central PMCID: PMC1325018.

32. Claffey KP, Shih SC, Mullen A, Dziennis S, Cusick JL, Abrams KR, et al. Identification of a human VPF/VEGF 3' untranslated region mediating hypoxia-induced mRNA stability. Mol Biol Cell. 1998;9(2):469–81. doi: 10.1091/mbc.9.2.469 9450968; PubMed Central PMCID: PMC25276.

33. Tonini T, Rossi F, Claudio PP. Molecular basis of angiogenesis and cancer. Oncogene. 2003;22(42):6549–56. doi: 10.1038/sj.onc.1206816 14528279.

34. Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J. 2009;417(3):651–66. doi: 10.1042/BJ20081847 19133842.

35. Ozawa K, Tsukamoto Y, Hori O, Kitao Y, Yanagi H, Stern DM, et al. Regulation of tumor angiogenesis by oxygen-regulated protein 150, an inducible endoplasmic reticulum chaperone. Cancer Res. 2001;61(10):4206–13. 11358846.

36. Kerr BA, Byzova TV. alphaB-crystallin: a novel VEGF chaperone. Blood. 2010;115(16):3181–3. doi: 10.1182/blood-2010-01-262766 20413662.

37. Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005;69 Suppl 3:4–10. doi: 10.1159/000088478 16301830.

38. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003;3(6):401–10. doi: 10.1038/nrc1093 12778130.

39. Fukumura D, Xu L, Chen Y, Gohongi T, Seed B, Jain RK. Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res. 2001;61(16):6020–4. 11507045.

40. Singh NK, Atreya CD, Nakhasi HL. Identification of calreticulin as a rubella virus RNA binding protein. Proc Natl Acad Sci U S A. 1994;91(26):12770–4. doi: 10.1073/pnas.91.26.12770 7809119; PubMed Central PMCID: PMC45521.

41. Timchenko LT, Iakova P, Welm AL, Cai ZJ, Timchenko NA. Calreticulin interacts with C/EBPalpha and C/EBPbeta mRNAs and represses translation of C/EBP proteins. Mol Cell Biol. 2002;22(20):7242–57. doi: 10.1128/MCB.22.20.7242-7257.2002 12242300; PubMed Central PMCID: PMC139801.

42. Iakova P, Wang GL, Timchenko L, Michalak M, Pereira-Smith OM, Smith JR, et al. Competition of CUGBP1 and calreticulin for the regulation of p21 translation determines cell fate. EMBO J. 2004;23(2):406–17. doi: 10.1038/sj.emboj.7600052 14726956; PubMed Central PMCID: PMC1271759.

43. Yoon GS, Lee H, Jung Y, Yu E, Moon HB, Song K, et al. Nuclear matrix of calreticulin in hepatocellular carcinoma. Cancer Res. 2000;60(4):1117–20. 10706133.

44. Hong SH, Misek DE, Wang H, Puravs E, Giordano TJ, Greenson JK, et al. An autoantibody-mediated immune response to calreticulin isoforms in pancreatic cancer. Cancer Res. 2004;64(15):5504–10. doi: 10.1158/0008-5472.CAN-04-0077 15289361.

45. Helbling D, Mueller BU, Timchenko NA, Schardt J, Eyer M, Betts DR, et al. CBFB-SMMHC is correlated with increased calreticulin expression and suppresses the granulocytic differentiation factor CEBPA in AML with inv(16). Blood. 2005;106(4):1369–75. doi: 10.1182/blood-2004-11-4392 15855281.

46. Du XL, Yang H, Liu SG, Luo ML, Hao JJ, Zhang Y, et al. Calreticulin promotes cell motility and enhances resistance to anoikis through STAT3-CTTN-Akt pathway in esophageal squamous cell carcinoma. Oncogene. 2009;28(42):3714–22. doi: 10.1038/onc.2009.237 19684620.

47. Bini L, Magi B, Marzocchi B, Arcuri F, Tripodi S, Cintorino M, et al. Protein expression profiles in human breast ductal carcinoma and histologically normal tissue. Electrophoresis. 1997;18(15):2832–41. doi: 10.1002/elps.1150181519 9504817.

48. Sheng W, Chen C, Dong M, Zhou J, Liu Q, Dong Q, et al. Overexpression of calreticulin contributes to the development and progression of pancreatic cancer. J Cell Physiol. 2014;229(7):887–97. doi: 10.1002/jcp.24519 24264800.


Článek vyšel v časopise

PLOS One


2019 Číslo 11