Exosomes from conditioned media of bone marrow-derived mesenchymal stem cells promote bone regeneration by enhancing angiogenesis


Autoři: Ryoko Takeuchi aff001;  Wataru Katagiri aff001;  Satoshi Endo aff001;  Tadaharu Kobayashi aff001
Působiště autorů: Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan aff001
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225472

Souhrn

Growth factors in serum-free conditioned media from human bone marrow-derived mesenchymal stem cells (MSC-CM) are known to be effective in bone regeneration. However, the secretomes in MSC-CM that act as active ingredients for bone regeneration, as well as their mechanisms, remains unclear. Exosomes, components of MSC-CM, provide the recipient cells with genetic information and enhance the recipient cellular paracrine stimulation, which contributes to tissue regeneration. We hypothesized that MSC-CM-derived exosomes (MSC-Exo) promoted bone regeneration, and that angiogenesis was a key step. Here, we prepared an MSC-Exo group, MSC-CM group, and Exo-antiVEGF group (MSC-Exo with angiogenesis inhibitor), and examined the osteogenic and angiogenic potential in MSCs. Furthermore, we used a rat model of calvaria bone defect and implanted each sample to evaluate bone formation weekly, until week 4 after treatment. Results showed that MSC-Exo enhanced cellular migration and osteogenic and angiogenic gene expression in MSCs compared to that in other groups. In vivo, early bone formation by MSC-Exo was also confirmed. Two weeks after implantation, the newly formed bone area was 31.5 ± 6.5% in the MSC-Exo group while those in the control and Exo-antiVEGF groups were 15.4 ± 4.4% and 8.7 ± 1.1%, respectively. Four weeks after implantation, differences in the area between the MSC-Exo group and the Exo-antiVEGF or control groups were further broadened. Histologically, notable accumulation of osteoblast-like cells and vascular endothelial cells was observed in the MSC-Exo group; however, fewer cells were found in the Exo-antiVEGF and control groups.

In conclusion, MSC-Exo promoted bone regeneration during early stages, as well as enhanced angiogenesis. Considering the tissue regeneration with transplanted cells and their secretomes, this study suggests that exosomes might play an important role, especially in angiogenesis.

Klíčová slova:

Angiogenesis – Cell migration – Cell staining – Endothelial cells – Exosomes – Medical implants – Mesenchymal stem cells – Neurobiology of disease and regeneration


Zdroje

1. Watson L, Elliman SJ, Coleman CM. From isolation to implantation: a concise review of mesenchymal stem cell therapy in bone fracture repair. Stem Cell Res Ther. 2014;5: 51. doi: 10.1186/scrt439 25099622. PMCID: PMC4055164.

2. Granero-Moltó F, Weis JA, Miga MI, Landis B, Myers TJ, O'Rear L, et al. Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells. 2009;27: 1887–1898. doi: 10.1002/stem.103 19544445. PMCID: PMC3426453.

3. Jafarian M, Eslaminejad MB, Khojasteh A, Mashhadi Abbas F, Dehghan MM, Hassanizadeh R, et al. Marrow-derived mesenchymal stem cells-directed bone regeneration in the dog mandible: a comparison between biphasic calcium phosphate and natural bone mineral. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105: e14–24. doi: 10.1016/j.tripleo.2008.01.010 18442730.

4. Kodama A, Kamei N, Kamei G, Kongcharoensombat W, Ohkawa S, Nakabayashi A, et al. In vivo bioluminescence imaging of transplanted bone marrow mesenchymal stromal cells using a magnetic delivery system in a rat fracture model. J Bone Joint Surg Br. 2012;94: 998–1006. doi: 10.1302/0301-620X.94B7.28521 22733960.

5. Granero-Moltó F, Myers TJ, Weis JA, Longobardi L, Li T, Yan Y, et al. Mesenchymal stem cells expressing insulin-like growth factor-I (MSCIGF) promote fracture healing and restore new bone formation in Irs1 knockout mice: Analyses of MSCIGF autocrine and paracrine regenerative effects. Stem Cells. 2011;29: 1537–1548. doi: 10.1002/stem.697 21786367. PMCID: PMC3622704.

6. Fennema EM, Tchang LAH, Yuan H, van Blitterswijk CA, Martin I, Scherberich A, et al. Ectopic bone formation by aggregated mesenchymal stem cells from bone marrow and adipose tissue: a comparative study. J Tissue Eng Regen Med. 2018;12: e150–e158. doi: 10.1002/term.2453 28485099.

7. Pelegrine AA, da Costa CE, Correa ME, Marques JF Jr. Clinical and histomorphometric evaluation of extraction sockets treated with an autologous bone marrow graft. Clin Oral Implants Res. 2010;21: 535–542. doi: 10.1111/j.1600-0501.2009.01891.x 20337664.

8. Rickert D, Sauerbier S, Nagursky H, Menne D, Vissink A, Raghoebar GM. Et al. Maxillary sinus floor elevation with bovine bone mineral combined with either autogenous bone or autogenous stem cells: a prospective randomized clinical trial. Clin Oral Implants Res. 2011;22: 251–258. doi: 10.1111/j.1600-0501.2010.01981.x 20831758.

9. Kaigler D, Pagni G, Park CH, Braun TM, Holman LA, Yi E, et al. Stem cell therapy for craniofacial bone regeneration: a randomized, controlled feasibility trial. Cell Transplant. 2013;22: 767–777. doi: 10.3727/096368912X652968 22776413. PMCID: PMC4100608.

10. Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM. Concise review: multifaceted characterization of human mesenchymal stem cells for use in regenerative medicine. Stem Cells Transl. Med. 2017;6: 2173–2185. doi: 10.1002/sctm.17-0129 29076267. PMCID: PMC5702523.

11. Robey PG. Cell sources for bone regeneration: the good, the bad, and the ugly (but promising). Tissue Eng Part B Rev. 2011;17: 423–430. doi: 10.1089/ten.teb.2011.0199 21797663. PMCID: PMC3223013.

12. Izadpanah R, Kaushal D, Kriedt C, Tsien F, Patel B, Dufour J, et al. Long-term in vitro expansion alters the biology of adult mesenchymal stem cells. Cancer Res. 2008;68: 4229–4238. doi: 10.1158/0008-5472.CAN-07-5272 18519682 PMCID: PMC2713721.

13. Mendes SC, Tibbe JM, Veenhof M, Bakker K, Both S, Platenburg PP, et al. Bone tissue-engineered implants using human bone marrow stromal cells: effect of culture conditions and donor age. Tissue Eng. 2002;8: 911–920. doi: 10.1089/107632702320934010 12542937.

14. Nishida S, Endo N, Yamagiwa H, Tanizawa T, Takahashi HE. Number of osteoprogenitor cells in human bone marrow markedly decreases after skeletal maturation. J Bone Miner Metab. 1999;17:171–177. doi: 10.1007/s007740050081 10757676.

15. Gangadaran P, Rajendran RL, Lee HW, Kalimuthu S, Hong CM, Jeong SY, et al. Extracellular vesicles from mesenchymal stem cells activates VEGF receptors and accelerates recovery of hindlimb ischemia. J Contr Release. 2017;264: 112–126. doi: 10.1016/j.jconrel.2017.08.022 28837823.

16. Guiducci S, Manetti M, Romano E, Mazzanti B, Ceccarelli C, Dal Pozzo S, et al. Bone marrow-derived mesenchymal stem cells from early diffuse systemic sclerosis exhibit a paracrine machinery and stimulate angiogenesis in vitro. Ann Rheum Dis. 2011;70: 2011–2021. doi: 10.1136/ard.2011.150607 21821866.

17. Linero I, Chaparro O. Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PLoS One. 2014;9: e107001. doi: 10.1371/journal.pone.0107001 25198551. PMCID: PMC4157844.

18. Osugi M, Katagiri W, Yoshimi R, Inukai T, Hibi H, Ueda M. Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects. Tissue Eng Part A. 2012;18: 1479–1489. doi: 10.1089/ten.TEA.2011.0325 22443121. PMCID: PMC3397118.

19. Katagiri W, Watanabe J, Toyama N, Osugi M, Sakaguchi K, Hibi H. Clinical study of bone regeneration by conditioned medium from mesenchymal stem cells after maxillary sinus floor elevation. Implant Dent. 2017;26: 607–612. doi: 10.1097/ID.0000000000000618 28727618.

20. Katagiri W, Osugi M, Kawai T, Ueda M. Novel cell-free regeneration of bone using stem cell-derived growth factors. Int J Oral Maxillofac Implants. 2013;28: 1009–1016. doi: 10.11607/jomi.3036 23869359.

21. Katagiri W1, Kawai T, Osugi M, Sugimura-Wakayama Y, Sakaguchi K, Kojima T, et al. Angiogenesis in newly regenerated bone by secretomes of human mesenchymal stem cells. Maxillofac Plast Reconstr Surg. 2017;39: 8. doi: 10.1186/s40902-017-0106-4 28405581. PMCID: PMC5366987.

22. Katagiri W, Osugi M, Kawai T, Hibi H. First-in-human study and clinical case reports of the alveolar bone regeneration with the secretome from human mesenchymal stem cells. Head Face Med. 2016;12: 5. doi: 10.1186/s13005-016-0101-5 26772731. PMCID: PMC4714459

23. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146: 873–887. doi: 10.1016/j.cell.2011.08.039 21925313.

24. Katagiri W, Sakaguchi K, Kawai T, Wakayama Y, Osugi M, Hibi H. A defined mix of cytokines mimics conditioned medium from cultures of bone marrow‐derived mesenchymal stem cells and elicits bone regeneration. Cell Prolif. 2017;50. doi: 10.1111/cpr.12333 28133828.

25. Dicarlo M, Bianchi N, Ferretti C, Orciani M, Di Primio R, Mattioli-Belmonte M. Evidence supporting a paracrine effect of IGF-1/VEGF on human mesenchymal stromal cell commitment. Cells Tissues Organs. 2016;201: 333–341. doi: 10.1159/000445346 27179123.

26. Rouwkema J, Rivron NC, van Blitterswijk CA. Vascularization in tissue engineering. Trends Biotechnol. 2008;26: 434–441. doi: 10.1016/j.tibtech.2008.04.009 18585808.

27. Saran U, Gemini Piperni S, Chatterjee S. Role of angiogenesis in bone repair. Arch Biochem Biophys. 2014;561: 109–117. doi: 10.1016/j.abb.2014.07.006 25034215.

28. Kawai T, Katagiri W, Osugi M, Sugimura Y, Hibi H, Ueda M. Secretomes from bone marrow-derived mesenchymal stromal cells enhance periodontal tissue regeneration. Cytotherapy. 2015;17: 369–381. doi: 10.1016/j.jcyt.2014.11.009 25595330.

29. Wang X, Omar O, Vazirisani F, Thomsen P, Ekström K. Mesenchymal stem cell-derived exosomes have altered microRNA profiles and induce osteogenic differentiation depending on the stage of differentiation. PLoS One. 2018;13: e0193059. doi: 10.1371/journal.pone.0193059 29447276. PMCID: PMC5814093.

30. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9: 654–659. doi: 10.1038/ncb1596 17486113.

31. Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010;4: 214–222. doi: 10.1016/j.scr.2009.12.003 20138817.

32. Dalirfardouei R, Jamialahmadi K, Jafarian AH, Mahdipour E. Promising effects of exosomes isolated from menstrual blood-derived mesenchymal stem cell on wound-healing process in diabetic mouse model. J Tissue Eng Regen Med. 2019;13: 555–568. doi: 10.1002/term.2799 30656863.

33. Zhang Y, Chopp M, Meng Y, Katakowski M, Xin H, Mahmood A, et al. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg. 2015;122: 856–867. doi: 10.3171/2014.11.JNS14770 25594326. PMCID: PMC4382456.

34. Pacelli S, Basu S, Whitlow J, Chakravarti A, Acosta F, Varshney A, et al. Strategies to develop endogenous stem cell recruiting bioactive materials for tissue repair and regeneration. Adv Drug Deliv Rev. 2017;120: 50–70. doi: 10.1016/j.addr.2017.07.011 28734899. PMCID: PMC5705585.

35. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3: 301–313. doi: 10.1016/j.stem.2008.07.003 18786417.

36. Krankel N, Spinetti G, Amadesi S, Madeddu P. Targeting stem cell niches and trafficking for cardiovascular therapy. Pharmacol Ther. 2011;129: 62–81. doi: 10.1016/j.pharmthera.2010.10.002 20965213. PMCID: PMC3017934.

37. Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin. 2013;34: 747–754. doi: 10.1038/aps.2013.50 23736003. PMCID: PMC4002895.

38. Liu S, Zhou J, Zhang X, Liu Y, Chen J, Hu B, et al. Strategies to optimize adult stem cell therapy for tissue regeneration. Int J Mol Sci. 2016;17. pii: E982. doi: 10.3390/ijms17060982 27338364. PMCID: PMC4926512.

39. Ogata K, Osugi M, Kawai T, Wakayama Y, Sakaguchi K, Nakamura S, et al. Secretomes of mesenchymal stem cells induce early bone regeneration by accelerating migration of stem cells. J Oral Maxillofac Surg Med Pathol. 2018;30: 445–451. doi: 10.1016/j.ajoms.2018.04.002

40. Gruber R, Stadlinger B, Terheyden. Cell-to-cell communication in guided bone regeneration: molecular and cellular mechanisms. Clin Oral Implants Res. 2017;28: 1139–1146. doi: 10.1111/clr.12929 27550738.

41. Paino F, Noce M, Giuliani A, Rosa A, Mazzoni S, Laino L, et al. Human DPSCs fabricate vascularized woven bone tissue: a new tool in bone tissue engineering. Clin Sci (Lond). 2017;131: 699–713. doi: 10.1042/CS20170047 28209631. PMCID: PMC5383003.

42. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. Faseb J. 1999;13: 9–22. 9872925.

43. Schorn L, Sproll C, Ommerborn M, Naujoks C, Kübler NR, Depprich R. Vertical bone regeneration using rhBMP-2 and VEGF. Head Face Med. 2017;13: 11. doi: 10.1186/s13005-017-0146-0 28592312. PMCID: PMC5463342.

44. Kumar S, Wan C, Ramaswamy G, Clemens TL, Ponnazhagan S. Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect. Mol Ther. 2010;18: 1026–1034. doi: 10.1038/mt.2009.315 20068549. PMCID: PMC2890123.

45. Duan X, Bradbury SR, Olsen BR, Berendsen AD. VEGF stimulates intramembranous bone formation during craniofacial skeletal development. Matrix Biol. 2016;52–54: 127–140. doi: 10.1016/j.matbio.2016.02.005 26899202. PMCID: PMC4875795.

46. Zhang B, Li Y, Yu Y, Zhao J, Ou Y, Chao Y, et al. MicroRNA-378 promotes osteogenesis-angiogenesis coupling in bmmscs for potential bone regeneration. Anal Cell Pathol (Amst). 2018;2018: 8402390. doi: 10.1155/2018/8402390 29686962. PMCID: PMC5852880.

47. Qin Y, Wang L, Gao Z, Chen G, Zhang C. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Sci Rep. 2016;6: 21961. doi: 10.1038/srep21961 26911789. PMCID: PMC4766421.

48. Furuta T, Miyaki S, Ishitobi H, Ogura T, Kato Y, Kamei N, et al. Mesenchymal stem cell‐derived exosomes promote fracture healing in a mouse model. Stem Cells Transl Med. 2016;5: 1620–1630. doi: 10.5966/sctm.2015-0285 27460850. PMCID: PMC5189643.

49. Chen S, Tang Y, Liu Y, Zhang P, Lv L, Zhang X, et al. Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Prolif. 2019: e12669. doi: 10.1111/cpr.12669 31380594.

50. Sun G, Li G, Li D, Huang W, Zhang R, Zhang H, et al. hucMSC derived exosomes promote functional recovery in spinal cord injury mice via attenuating inflammation. Mater Sci Eng C Mater Biol Appl. 2018;89: 194–204. doi: 10.1016/j.msec.2018.04.006 29752089.

51. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200: 373–383. doi: 10.1083/jcb.201211138 23420871. PMCID: PMC3575529.

52. H Rashed M, Bayraktar E, K Helal G, Abd-Ellah MF, Amero P, Chavez-Reyes A, et al. Exosomes: from garbage bins to promising therapeutic targets. Int J Mol Sci. 2017;18. pii: E538. doi: 10.3390/ijms18030538 28257101. PMCID: PMC5372554.

53. Fleury A, Martinez MC, Le Lay S. Extracellular vesicles as therapeutic tools in cardiovascular diseases. Front Immunol. 2014;5: 370. doi: 10.3389/fimmu.2014.00370 25136343. PMCID: PMC4120684.

54. Yu B., Zhang X., Li X. Exosomes derived from mesenchymal stem cells. Int J Mol Sci. 2014;15: 4142–4157. doi: 10.3390/ijms15034142 24608926. PMCID: PMC3975389.


Článek vyšel v časopise

PLOS One


2019 Číslo 11