Regression adjusted colocalisation colour mapping (RACC): A novel biological visual analysis method for qualitative colocalisation analysis of 3D fluorescence micrographs

Autoři: Rensu P. Theart aff001;  Ben Loos aff002;  Thomas R. Niesler aff001
Působiště autorů: Department of Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch, Western Cape, South Africa aff001;  Department of Physiological Sciences, Stellenbosch University, Stellenbosch, Western Cape, South Africa aff002
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225141


The qualitative analysis of colocalisation in fluorescence microscopy is of critical importance to the understanding of biological processes and cellular function. However, the degree of accuracy achieved may differ substantially when executing different yet commonly utilized colocalisation analyses. We propose a novel biological visual analysis method that determines the correlation within the fluorescence intensities and subsequently uses this correlation to assign a colourmap value to each voxel in a three-dimensional sample while also highlighting volumes with greater combined fluorescence intensity. This addresses the ambiguity and variability which can be introduced into the visualisation of the spatial distribution of correlation between two fluorescence channels when the colocalisation between these channels is not considered. Most currently employed and generally accepted methods of visualising colocalisation using a colourmap can be negatively affected by this ambiguity, for example by incorrectly indicating non-colocalised voxels as positively correlated. In this paper we evaluate the proposed method by applying it to both synthetic data and biological fluorescence micrographs and demonstrate how it can enhance the visualisation in a robust way by visualising only truly colocalised regions using a colourmap to indicate the qualitative measure of the correlation between the fluorescence intensities. This approach may substantially support fluorescence microscopy applications in which precise colocalisation analysis is of particular relevance.

Klíčová slova:

Cellular structures and organelles – Covariance – Data visualization – Fluorescence imaging – Fluorescence microscopy – Lysosomes – Molecular structure – Tubulins


1. Dunn KW, Kamocka MM, McDonald JH. A practical guide to evaluating colocalisation in biological microscopy. American Journal of Physiology-Cell Physiology. 2011 Apr 1;300(4):C723–42. doi: 10.1152/ajpcell.00462.2010 21209361

2. Zinchuk V, Zinchuk O, Okada T. Quantitative colocalisation analysis of multicolor confocal immunofluorescence microscopy images: pushing pixels to explore biological phenomena. Acta histochemica et cytochemica. 2007;40(4):101–11. doi: 10.1267/ahc.07002 17898874

3. Bolte S, Cordelieres FP. A guided tour into subcellular colocalisation analysis in light microscopy. Journal of Microscopy. 2006 Dec 1;224(3):213–32. doi: 10.1111/j.1365-2818.2006.01706.x 17210054

4. Scriven DR, Klimek A, Asghari P, Bellve K, Moore ED. Caveolin-3 is adjacent to a group of extradyadic ryanodine receptors. Biophysical Journal. 2005 Sep 30;89(3):1893–901. doi: 10.1529/biophysj.105.064212 15980179

5. Theart RP, Loos B, Niesler TR. Virtual reality assisted microscopy data visualisation and colocalisation analysis. BMC Bioinformatics. 2017 Feb 15;18(2):64. doi: 10.1186/s12859-016-1446-2 28251867

6. Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S. Automatic and quantitative measurement of protein-protein colocalisation in live cells. Biophysical journal. 2004 Jun 1;86(6):3993–4003. doi: 10.1529/biophysj.103.038422 15189895

7. Theart RP, Loos B, Powrie YS, Niesler TR. Improved region of interest selection and colocalisation analysis in three-dimensional fluorescence microscopy samples using virtual reality. PloS one. 2018 Aug 29;13(8). doi: 10.1371/journal.pone.0201965 30157239

8. Demandolx D, Davoust J. Multicolour analysis and local image correlation in confocal microscopy. Journal of Microscopy. 1997 Jan 1;185(1):21–36. doi: 10.1046/j.1365-2818.1997.1470704.x

9. Agnati LF, Fuxe K, Torvinen M, Genedani S, Franco R, Watson S, et al. New methods to evaluate colocalisation of fluorophores in immunocytochemical preparations as exemplified by a study on A2A and D2 receptors in Chinese hamster ovary cells. Journal of Histochemistry & Cytochemistry. 2005 Aug;53(8):941–53. doi: 10.1369/jhc.4A6355.2005

10. Villalta JI, Galli S, Iacaruso MF, Arciuch VG, Poderoso JJ, Jares-Erijman EA, et al. New algorithm to determine true colocalisation in combination with image restoration and time-lapse confocal microscopy to MAP kinases in mitochondria. PLoS One. 2011 Apr 29;6(4):e19031. doi: 10.1371/journal.pone.0019031 21559502

11. Jaskolski F, Mulle C, Manzoni OJ. An automated method to quantify and visualise colocalised fluorescent signals. Journal of Neuroscience Methods. 2005 Jul 15;146(1):42–9. doi: 10.1016/j.jneumeth.2005.01.012 15935219

12. Gorlewicz A, Wlodarczyk J, Wilczek E, Gawlak M, Cabaj A, Majczynski H, et al. CD44 is expressed in non-myelinating Schwann cells of the adult rat, and may play a role in neurodegeneration-induced glial plasticity at the neuromuscular junction. Neurobiology of disease. 2009 May 1;34(2):245–58. doi: 10.1016/j.nbd.2009.01.011 19385056

13. Ostler N, Britzen-Laurent N, Liebl A, Naschberger E, Lochnit G, Ostler M, et al. IFN-γ-induced guanylate binding protein-1 is a novel actin cytoskeleton remodeling factor. Molecular and cellular biology. 2013 Nov 4:MCB-00664. doi: 10.1128/MCB.00664-13 24190970

14. Bettegazzi B, Bellani S, Roncon P, Guarnieri FC, Bertero A, Codazzi F, et al. eIF4B phosphorylation at Ser504 links synaptic activity with protein translation in physiology and pathology. Scientific reports. 2017 Sep 5;7(1):10563. doi: 10.1038/s41598-017-11096-1 28874824

15. Lemieux M, Labrecque S, Tardif C, Labrie-Dion É, LeBel É, De Koninck P. Translocation of CaMKII to dendritic microtubules supports the plasticity of local synapses. J Cell Biol. 2012 Sep 17;198(6):1055–73. doi: 10.1083/jcb.201202058 22965911

16. De Juan-Sanz J, Núñez E, Villarejo-López L, Pérez-Hernández D, Rodriguez-Fraticelli AE, López-Corcuera B, et al. Na+/K+-ATPase is a new interacting partner for the neuronal glycine transporter GlyT2 that downregulates its expression in vitro and in vivo. Journal of Neuroscience. 2013 Aug 28;33(35):14269–81. doi: 10.1523/JNEUROSCI.1532-13.2013 23986260

17. Cornbleet PJ, Gochman N. Incorrect least-squares regression coefficients in method-comparison analysis. Clinical chemistry. 1979 Mar 1;25(3):432–8. 262186

18. Deming WE. Statistical adjustment of data. New York: John Wiley & Sons, 1943:184.

19. Adcock RJ. A problem in least squares. The Analyst. 1878;5(1):53–4. doi: 10.2307/2635758

20. Cheng C, Van Ness JW. Statistical Regression with Measurement Error. Kendall’s Library of Statistics 6. London: Arnold; 1999.

21. Hammond GR, Takasuga S, Sasaki T, Balla T. The ML1Nx2 phosphatidylinositol 3, 5-bisphosphate probe shows poor selectivity in cells. PloS one. 2015 Oct 13;10(10):e0139957. doi: 10.1371/journal.pone.0139957 26460749

22. Christoforides C, Rainero E, Brown KK, Norman JC, Toker A. PKD controls αvβ3 integrin recycling and tumor cell invasive migration through its substrate Rabaptin-5. Developmental cell. 2012 Sep 11;23(3):560–72. doi: 10.1016/j.devcel.2012.08.008 22975325

23. Du Toit A, Hofmeyr JH, Gniadek TJ, Loos B. Measuring autophagosome flux. Autophagy. 2018 Jul 19:1–2. doi: 10.1080/15548627.2018.1469590

24. Heintzmann R, Cremer CG. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. InOptical Biopsies and Microscopic Techniques III 1999 Jan 19 (Vol. 3568, pp. 185-197). International Society for Optics and Photonics.

25. Loos B, Engelbrecht AM, Lockshin RA, Klionsky DJ, Zakeri Z. The variability of autophagy and cell death susceptibility: Unanswered questions. Autophagy. 2013 Sep 29;9(9):1270–85. doi: 10.4161/auto.25560 23846383

26. Du Toit A, De Wet S, Hofmeyr JH, Müller-Nedebock K, Loos B. The precision control of autophagic flux and vesicle dynamics—a micropattern approach. Cells. 2018 Aug 3;7(8):94. doi: 10.3390/cells7080094

27. Wu Y, Eghbali M, Ou J, Lu R, Toro L, Stefani E. Quantitative determination of spatial protein-protein correlations in fluorescence confocal microscopy. Biophysical journal. 2010 Feb 3;98(3):493–504. doi: 10.1016/j.bpj.2009.10.037 20141764

Článek vyšel v časopise


2019 Číslo 11