Hello, is that me you are looking for? A re-examination of the role of the DMN in social and self relevant aspects of off-task thought


Autoři: Charlotte Murphy aff001;  Giulia Poerio aff002;  Mladen Sormaz aff001;  Hao-Ting Wang aff001;  Deniz Vatansever aff001;  Micah Allen aff003;  Daniel S. Margulies aff004;  Elizabeth Jefferies aff001;  Jonathan Smallwood aff001
Působiště autorů: Department of Psychology, University of York, York England, United Kingdom aff001;  Department of Psychology, The University of Sheffield, Sheffield, England, United Kingdom aff002;  Cambridge Psychiatry, Cambridge University, Cambridge, United Kingdom aff003;  FRONTLAB, ICM—Hôpital Pitié Salpêtrière, Paris, France aff004
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0216182

Souhrn

Neural activity within the default mode network (DMN) is widely assumed to relate to processing during off-task states, however it remains unclear whether this association emerges from a shared role in self or social content that is common in these conditions. In the current study, we examine the possibility that the role of the DMN in ongoing thought emerges from contributions to specific features of off-task experience such as self-relevant or social content. A group of participants described their experiences while performing a laboratory task over a period of days. In a different session, neural activity was measured while participants performed Self/Other judgements (e.g., Does the word ‘Honest’ apply to you (Self condition) or Barack Obama (Other condition)). Despite the prominence of social and personal content in off-task reports, there was no association with neural activity during off-task trait adjective judgements. Instead, during both Self and Other judgements we found recruitment of caudal posterior cingulate cortex—a core DMN hub—was above baseline for individuals whose laboratory experiences were characterised as detailed. These data provide little support for a role of the DMN in self or other content in the off-task state and instead suggest a role in how on-going thought is represented.

Klíčová slova:

Cingulate cortex – Cognition – Functional magnetic resonance imaging – Magnetic resonance imaging – Memory – Neuroimaging – principal component analysis – Occipital lobe


Zdroje

1. Smallwood J., & Schooler J. W. The science of mind wandering: empirically navigating the stream of consciousness. Annu Rev Psychol, 2015; 66, 487–518. doi: 10.1146/annurev-psych-010814-015331 25293689

2. Seli P., Kane M. J., Smallwood J., Schacter D. L., Maillet D., Schooler J. W., et al. Mind-Wandering as a Natural Kind: A Family-Resemblances View. Trends Cogn Sci, 2018; 22(6), 479–490. doi: 10.1016/j.tics.2018.03.010 29776466

3. Andrews-Hanna J. R., Smallwood J., & Spreng R. N. The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann N Y Acad Sci, 2014; 1316, 29–52. doi: 10.1111/nyas.12360 24502540

4. Raichle M. E. The brain's default mode network. Annu Rev Neurosci, 2015; 38, 433–447. doi: 10.1146/annurev-neuro-071013-014030 25938726

5. McKiernan K. A., Kaufman J. N., Kucera-Thompson J., & Binder J. RA parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J Cogn Neurosci, 2003; 15(3), 394–408. doi: 10.1162/089892903321593117 12729491

6. Christoff K., Gordon A. M., Smallwood J., Smith R., & Schooler J. W. Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proc Natl Acad Sci U S A, 2009; 106(21), 8719–8724. doi: 10.1073/pnas.0900234106 19433790

7. Stawarczyk D., Majerus S., Maquet P., & D'Argembeau A. Neural correlates of ongoing conscious experience: both task-unrelatedness and stimulus-independence are related to default network activity. PLoS One, 2011; 6(2), e16997. doi: 10.1371/journal.pone.0016997 21347270

8. Irish M., Goldberg Z. L., Alaeddin S., O’Callaghan C., & Andrews-Hanna J. R. Age-related changes in the temporal focus and self-referential content of spontaneous cognition during periods of low cognitive demand. Psychological research, 2018; 1–14.

9. Spreng R. N. The fallacy of a "task-negative" network. Front Psychol, 2012; 3, 145. doi: 10.3389/fpsyg.2012.00145 22593750

10. Krieger-Redwood K., Jefferies E., Karapanagiotidis T., Seymour R., Nunes A., Ang J. W., et al. Down but not out in posterior cingulate cortex: Deactivation yet functional coupling with prefrontal cortex during demanding semantic cognition. Neuroimage, 2016; 141, 366–377. doi: 10.1016/j.neuroimage.2016.07.060 27485753

11. Crittenden B. M., Mitchell D. J., & Duncan J. Recruitment of the default mode network during a demanding act of executive control. Elife, 2015; 4, e06481. doi: 10.7554/eLife.06481 25866927

12. Murphy C., Jefferies E., Rueschemeyer S. A., Sormaz M., Wang H. T., Margulies D. S., et al. Distant from input: Evidence of regions within the default mode network supporting perceptually-decoupled and conceptually-guided cognition. Neuroimage, 2018; 171, 393–401. doi: 10.1016/j.neuroimage.2018.01.017 29339310

13. Murphy C., Wang H. T., Konu D., Lowndes R., Margulies D. S., Jefferies E., et al. Modes of operation: A topographic neural gradient supporting stimulus dependent and independent cognition. NeuroImage, 2019; 186, 487–496. doi: 10.1016/j.neuroimage.2018.11.009 30447291

14. Vatansever D., Menon D. K., & Stamatakis E. A. Default mode contributions to automated information processing. Proc Natl Acad Sci U S A. 2017; doi: 10.1073/pnas.1710521114 29078345

15. Van Den Heuvel M. P., & Sporns O. Rich-club organization of the human connectome. Journal of Neuroscience, 2011; 31(44), 15775–15786. doi: 10.1523/JNEUROSCI.3539-11.2011 22049421

16. Margulies D. S., Ghosh S. S., Goulas A., Falkiewicz M., Huntenburg J. M., Langs G., et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci U S A, 2016; 113(44), 12574–12579. doi: 10.1073/pnas.1608282113 27791099

17. Mesulam M. M. From sensation to cognition. Brain, 1998; 121 (Pt 6), 1013–1052.

18. Sormaz M., Murphy C., Wang H. T., Hymers M., Karapanagiotidis T., Poerio G., et al. Default mode network can support the level of detail in experience during active task states. Proceedings of the National Academy of Sciences, 2018; 115(37), 9318–9323.

19. Smallwood J., Karapanagiotidis T., Ruby F., Medea B., de Caso I., Konishi M., et al. Representing Representation: Integration between the Temporal Lobe and the Posterior Cingulate Influences the Content and Form of Spontaneous Thought. PLoS One, 2016; 11(4), e0152272. doi: 10.1371/journal.pone.0152272 27045292

20. Wong S., Irish M., Leshikar E. D., Duarte A., Bertoux M., Savage G., et al. The self-reference effect in dementia: Differential involvement of cortical midline structures in Alzheimer's disease and behavioural-variant frontotemporal dementia. Cortex, 2017; 91, 169–185. doi: 10.1016/j.cortex.2016.09.013 27771044

21. Song X., & Wang X. Mind wandering in Chinese daily lives–an experience sampling study. PloS one, 2012; 7(9), e44423. doi: 10.1371/journal.pone.0044423 22957071

22. Ruby F. J., Smallwood J., Engen H., & Singer T. How self-generated thought shapes mood—the relation between mind-wandering and mood depends on the socio-temporal content of thoughts. PloS one, 2013; 8(10), e77554. doi: 10.1371/journal.pone.0077554 24194889

23. Sanders J. G., Wang H. T., Schooler J., & Smallwood J. Can I get me out of my head? Exploring strategies for controlling the self-referential aspects of the mind-wandering state during reading. The Quarterly Journal of Experimental Psychology, 2017; 70(6), 1053–1062. doi: 10.1080/17470218.2016.1216573 27485462

24. Baird B., Smallwood J., & Schooler J. W. Back to the future: autobiographical planning and the functionality of mind-wandering. Consciousness and cognition, 2011; 20(4), 1604–1611. doi: 10.1016/j.concog.2011.08.007 21917482

25. Konishi M., Brown K., Battaglini L., & Smallwood J. When attention wanders: Pupillometric signatures of fluctuations in external attention. Cognition, 2017; 168, 16–26. doi: 10.1016/j.cognition.2017.06.006 28645038

26. Mitchell J. P., Banaji M. R., & Macrae C. N. The link between social cognition and self-referential thought in the medial prefrontal cortex. J Cogn Neurosci, 2015; 17(8), 1306–1315. doi: 10.1162/0898929055002418 16197685

27. Smallwood J., Schooler J. W., Turk D. J., Cunningham S. J., Burns P., & Macrae C. N. Self-reflection and the temporal focus of the wandering mind. Consciousness and cognition, 2011; 20(4), 1120–1126. doi: 10.1016/j.concog.2010.12.017 21277803

28. Konishi M., McLaren D. G., Engen H., & Smallwood J. Shaped by the past: the default mode network supports cognition that is independent of immediate perceptual input. PloS one, 2015; 10(6), e0132209. doi: 10.1371/journal.pone.0132209 26125559

29. Wang H. T., Poerio G., Murphy C., Bzdok D., Jefferies E., & Smallwood J. Dimensions of experience: exploring the heterogeneity of the wandering mind. Psychological science, 2018; 29(1), 56–71. doi: 10.1177/0956797617728727 29131720

30. Anderson N. H. Likableness ratings of 555 personality-trait words. J Pers Soc Psychol, 1968; 9(3), 272–279. doi: 10.1037/h0025907 5666976

31. Ashburner J., & Friston K. J. Unified segmentation. Neuroimage, 2005; 26, 839–851. doi: 10.1016/j.neuroimage.2005.02.018 15955494

32. Ciric R., Wolf D. H., Power J. D., Roalf D. R., Baum G. L., Ruparel K., et al. Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. Neuroimage, 2017; 154, 174–187. doi: 10.1016/j.neuroimage.2017.03.020 28302591

33. Friston K. J., Williams S., Howard R., Frackowiak R. S., & Turner R. Movement-related effects in fMRI time-series. Magn Reson Med, 1996; 35, 346–355. doi: 10.1002/mrm.1910350312 8699946

34. Behzadi Y., Restom K., Liau J., & Liu T. T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage, 2007; 37, 90–101. doi: 10.1016/j.neuroimage.2007.04.042 17560126

35. Power J. D., Mitra. A., Laumann T. O., Snyder A. Z., Schlaggar B. L., & Petersen S. E. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage, 2014; 84, 320–341. doi: 10.1016/j.neuroimage.2013.08.048 23994314

36. Whitfield-Gabrieli S., & Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain connectivity 2012; 2, 125–141. doi: 10.1089/brain.2012.0073 22642651

37. Yeo B.T., Krienen F. M., Sepulcre J., Sabuncu M. R., Lashkari D., Hollinshead M., et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiology, 2011; 106, 1125–1165.

38. Hu C., Di X., Eickhoff S. B., Zhang M., Peng K., Guo H., et al. Distinct and common aspects of physical and psychological self-representation in the brain: A meta-analysis of self-bias in facial and self-referential judgements. Neuroscience & biobehavioral reviews, 2016; 61, 197–207.

39. Quintana D. S., & Williams D. R. Bayesian alternatives for common null-hypothesis significance tests in psychiatry: a non-technical guide using JASP. BMC psychiatry, 2018; 18(1), 178. doi: 10.1186/s12888-018-1761-4 29879931

40. O’Callaghan C., Shine J. M., Lewis S. J., Andrews-Hanna J. R., & Irish M. Shaped by our thoughts–A new task to assess spontaneous cognition and its associated neural correlates in the default network. Brain and cognition, 2015; 93, 1–10. doi: 10.1016/j.bandc.2014.11.001 25463243

41. Bzdok D., Heeger A., Langner R., Laird A. R., Fox P. T., Palomero-Gallagher, et al. Subspecialization in the human posterior medial cortex. Neuroimage, 2015; 106, 55–71. doi: 10.1016/j.neuroimage.2014.11.009 25462801

42. Richter F. R., Cooper R. A., Bays P. M., & Simons J. S. Distinct neural mechanisms underlie the success, precision, and vividness of episodic memory. Elife, 2016; 5, e18260. doi: 10.7554/eLife.18260 27776631

43. Sestieri C., Capotosto P., Tosoni A., Luca Romani G., & Corbetta M. Interference with episodic memory retrieval following transcranial stimulation of the inferior but not the superior parietal lobule. Neuropsychologia, 2013; 51(5), 900–906. doi: 10.1016/j.neuropsychologia.2013.01.023 23391557

44. Davey J., Cornelissen P. L., Thompson H. E., Sonkusare S., Hallam G., Smallwood J., & Jefferies E. Automatic and Controlled Semantic Retrieval: TMS Reveals Distinct Contributions of Posterior Middle Temporal Gyrus and Angular Gyrus. J Neurosci, 2015; 35(46), 15230–15239. doi: 10.1523/JNEUROSCI.4705-14.2015 26586812

45. O’Callaghan C., Shine J. M., Lewis S. J., Andrews-Hanna J. R., & Irish M. Shaped by our thoughts–A new task to assess spontaneous cognition and its associated neural correlates in the default network. Brain and cognition, 2015; 93, 1–10. doi: 10.1016/j.bandc.2014.11.001 25463243

46. Buckner R. L., & Krienen F. M. The evolution of distributed association networks in the human brain. Trends Cogn Sci, 2013; 17(12), 648–665. doi: 10.1016/j.tics.2013.09.017 24210963

47. Ramanan S., Alaeddin S., Goldberg Z. L., Strikwerda-Brown C., Hodges J. R., & Irish M. Exploring the contribution of visual imagery to scene construction–Evidence from Posterior Cortical Atrophy. Cortex, 2018; 106, 261–274. doi: 10.1016/j.cortex.2018.06.016 30059847

48. Hassabis D., & Maguire E. A. Deconstructing episodic memory with construction. Trends in cognitive sciences, 2007; 11(7), 299–306. doi: 10.1016/j.tics.2007.05.001 17548229

49. González-García C., Flounders M. W., Chang R., Baria A. T., & He B. J. Content-specific activity in frontoparietal and default-mode networks during prior-guided visual perception. eLife, 2018; 7, e36068. doi: 10.7554/eLife.36068 30063006

50. Leech R., Braga R., & Sharp D. J. Echoes of the brain within the posterior cingulate cortex. Journal of Neuroscience, 2012; 32(1), 215–222. doi: 10.1523/JNEUROSCI.3689-11.2012 22219283

51. Braga R. M., & Leech R. Echoes of the Brain: Local-Scale Representation of Whole-Brain Functional Networks within Transmodal Cortex. Neuroscientist. 2015; doi: 10.1177/1073858415585730 25948648

52. Kernbach J. M., Yeo B. T., Smallwood J., Margulies D. S., de Schotten M. T., Walter H., et al. Subspecialization within default mode nodes characterized in 10,000 UK Biobank participants. Proceedings of the National Academy of Sciences, 2018; 115(48), 12295–12300.

53. Ho N. S. P., Wang X., Vatansever D., Margulies D. S., Bernhardt B., Jefferies E., & Smallwood J. Individual variation in patterns of task focused, and detailed, thought are uniquely associated within the architecture of the medial temporal lobe. NeuroImage, 2019; 202, 116045. doi: 10.1016/j.neuroimage.2019.116045 31349068

54. Christoff K., Irving Z. C., Fox K. C., Spreng R. N., & Andrews-Hanna J. R. Mind-wandering as spontaneous thought: a dynamic framework. Nature Reviews Neuroscience, 2016; 17(11), 718. doi: 10.1038/nrn.2016.113 27654862

55. Smallwood J. Distinguishing how from why the mind wanders: a process–occurrence framework for self-generated mental activity. Psychological bulletin, 2013; 139(3), 519. doi: 10.1037/a0030010 23607430

56. Schooler J. W. Re-representing consciousness: dissociations between experience and meta-consciousness. Trends Cogn Sci, 2002; 6(8), 339–344. 12140084

57. Hulley S. B., Cummings S. R., Browner W. S., Grady D., & Newman TB. Designing clinical research: an epidemiologic approach. 4th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2013. Appendix 6C, page 79.


Článek vyšel v časopise

PLOS One


2019 Číslo 11