Effectiveness of novel fabrics to resist punctures and lacerations from white shark (Carcharodon carcharias): Implications to reduce injuries from shark bites

Autoři: Sasha K. Whitmarsh aff001;  Dhara B. Amin aff001;  John J. Costi aff001;  Joshua D. Dennis aff001;  Charlie Huveneers aff001
Působiště autorů: College of Science and Engineering, Flinders University, Adelaide, South Australia aff001
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224432


Increases in the number of shark bites, along with increased media attention on shark-human interactions has led to growing interest in preventing injuries from shark bites through the use of personal mitigation measures. The leading cause of fatality from shark bite victims is blood loss; thus reducing haemorrhaging may provide additional time for a shark bite victim to be attended to by emergency services. Despite previous shark-proof suits being bulky and cumbersome, new technological advances in fabric has allowed the development of lightweight alternatives that can be incorporated onto traditional wetsuits. The ability for these fabrics to withstand shark bites has not been scientifically tested. In this report, we compared two types of recently developed protective fabrics that incorporated ultra-high molecular weight polyethylene (UHMWPE) fibre onto neoprene (SharkStop and ActionTX) and compared them to standard neoprene alternatives. We tested nine different fabric variants using three different tests, laboratory-based puncture and laceration tests, along with field-based trials involving white sharks Carcharodon carcharias. Field-based trials consisted of measuring C. carcharias bite force and quantifying damages to the new fabrics following a bite from 3–4 m total length C. carcharias. We found that SharkStop and ActionTX fabric variants were more resistant to puncture, laceration, and bites from C. carcharias. More force was required to puncture the new fabrics compared to control fabrics (laboratory-based tests), and cuts made to the new fabrics were smaller and shallower than those on standard neoprene for both types of test, i.e. laboratory and field tests. Our results showed that UHMWPE fibre increased the resistance of neoprene to shark bites. Although the use of UHMWPE fibre (e.g. SharkStop and ActionTX) may therefore reduce blood loss resulting from a shark bite, research is needed to assess if the reduction in damages to the fabrics extends to human tissues and decreased injuries.

Klíčová slova:

Australia – Dentition – Field tests – Foams – Jaw – Laboratory tests – Sharks – Teeth


1. McPhee D. Unprovoked shark bites: Are they becoming more prevalent? Coast Manage. 2014;42(5):478–92.

2. Chapman BK, McPhee D. Global shark attack hotspots: Identifying underlying factors behind increased unprovoked shark bite incidence. Ocean Coast Manage. 2016;133:72–84.

3. Lemahieu A, Blaison A, Crochelet E, Bertrand G, Pennober G, Soria M. Human-shark interactions: the case study of Reunion island in the south-west Indian Ocean. Ocean Coast Manage. 2017;136:73–82.

4. Afonso AS, Niella YV, Hazin FHV. Inferring trends and linkages between shark abundance and shark bites on humans for shark-hazard mitigation. Mar Freshwater Res. 2017;68(7):1354–65. doi: 10.1071/MF16274

5. Meyer CG, Anderson JM, Coffey DM, Hutchinson MR, Royer MA, Holland KN. Habitat geography around Hawaii’s oceanic islands influences tiger shark (Galeocerdo cuvier) spatial behaviour and shark bite risk at ocean recreation sites. Scientific reports. 2018;8(1):4945. doi: 10.1038/s41598-018-23006-0 29563552

6. West JG. Changing patterns of shark attacks in Australian waters. Mar Freshwater Res. 2011;62(6):744–54. doi: 10.1071/MF10181

7. Australian Bureau of Statistics. Population Australia: Australian Bureau of Statistics; 2019 [cited 2019 06/06/19]. Available from: https://www.abs.gov.au/Population.

8. Australian Bureau of Statistics. How many people live in Australia's coastal areas? 2019 [cited 2019 06/06/19]. Available from: https://www.abs.gov.au/Ausstats/abs@.nsf/Previousproducts/1301.0Feature%20Article32004.

9. Woolgar JD, Cliff G, Nair R, Hafez H, Robbs JV. Shark attack: review of 86 consecutive cases. Journal of Trauma and Acute Care Surgery. 2001;50(5):887–91.

10. Ballas R, Saetta G, Peuchot C, Elkienbaum P, Poinsot E. Clinical features of 27 shark attack cases on La Réunion Island. Journal of Trauma and Acute Care Surgery. 2017;82(5):952–5. doi: 10.1097/TA.0000000000001399 01586154-201705000-00018. 28248805

11. Burgess G, Buch R, Carvalho F, Garner B, Walker C. Factors contributing to shark attacks on humans a Volusia County, Florida, case study. In: Carrier JC MJ, Heithaus MR, editor. Sharks and their relatives: II Biodiversity, adaptive physiology, and conservation. Boca Raton, FL: CRC Press; 2010. p. 541–65.

12. Sabatier E, Huveneers C. Changes in Media Portrayal of Human-wildlife Conflict During Successive Fatal Shark Bites. Conservation and Society. 2018;16(3):338–50.

13. Crossley R, Collins CM, Sutton SG, Huveneers C. Public perception and understanding of shark attack mitigation measures in Australia. Human dimensions of wildlife. 2014;19(2):154–65.

14. Muter BA, Gore ML, Gledhill KS, Lamont C, Huveneers C. Australian and U.S. news media portrayal of sharks and their conservation. Conserv Biol. 2013;27(1):187–96. doi: 10.1111/j.1523-1739.2012.01952.x 23110588

15. Kempster RM, Egeberg CA, Hart NS, Ryan L, Chapuis L, Kerr CC, et al. How Close is too Close? The Effect of a Non-Lethal Electric Shark Deterrent on White Shark Behaviour. PLOS ONE. 2016;11(7):e0157717. doi: 10.1371/journal.pone.0157717 27368059

16. Hart NS, Collin SP. Sharks senses and shark repellents. Integrative Zoology. 2015;10(1):38–64. doi: 10.1111/1749-4877.12095 24919643

17. Huveneers C, Whitmarsh S, Thiele M, Meyer L, Fox A, Bradshaw CJA. Effectiveness of five personal shark-bite deterrents for surfers. PeerJ. 2018;6:e5554. doi: 10.7717/peerj.5554 30186701

18. Engelbrecht T, Kock A, Waries S, O’Riain MJ. Shark Spotters: Successfully reducing spatial overlap between white sharks (Carcharodon carcharias) and recreational water users in False Bay, South Africa. PloS one. 2017;12(9):e0185335. doi: 10.1371/journal.pone.0185335 28945806

19. Curtis T, Bruce B, Cliff G, Dudley S, Klimley A, Kock A, et al. Recommendations for governmental organizations responding to incidents of white shark attacks on humans. In: ML D, editor. Global Perspectives on the Biology and Life History of the Great White Shark. Boca Raton, Florida: CRC Press; 2012. p. 477–510.

20. Colefax AP, Butcher PA, Pagendam DE, Kelaher BP. Reliability of marine faunal detections in drone-based monitoring. Ocean Coast Manage. 2019;174:108–15. doi: 10.1016/j.ocecoaman.2019.03.008

21. Huveneers C, Rogers PJ, Semmens JM, Beckmann C, Kock AA, Page B, et al. Effects of an electric field on white sharks: In situ testing of an electric deterrent. PLOS ONE. 2013;8(5):e62730. doi: 10.1371/journal.pone.0062730 23658766

22. Shishoo R. Recent developments in materials for use in protective clothing. International Journal of Clothing Science and Technology. 2002;14(3–4):201–15. doi: 10.1108/09556220210437167

23. Greenhalgh ES, Bloodworth VM, Iannucci L, Pope D. Fractographic observations on Dyneema® composites under ballistic impact. Composites Part A: Applied Science and Manufacturing. 2013;44:51–62. doi: 10.1016/j.compositesa.2012.08.012

24. van Dingenen JLJ. High performance Dyneema fibres in composites. Materials & Design. 1989;10(2):101–4. doi: 10.1016/S0261-3069(89)80021-4

25. Karbalaie M, Yazdanirad M, Mirhabibi A. High performance Dyneema® fiber laminate for impact resistance/macro structural composites. Journal of Thermoplastic Composite Materials. 2011;25(4):403–14. doi: 10.1177/0892705711411339

26. Walley S, Chapman D, Williamson D, Morley M, Fairhead T, Proud W. High rate mechanical properties of Dyneema in compression. Proceeding of DYMAT. 2009:1133–8.

27. Hazzard MK, Hallett S, Curtis PT, Iannucci L, Trask RS. Effect of fibre orientation on the low velocity impact response of thin Dyneema® composite laminates. Int J Impact Eng. 2017;100:35–45. doi: 10.1016/j.ijimpeng.2016.10.007

28. Utomo BDH, Ernst LJ. Detailed modeling of projectile impact on Dyneema composite using dynamic properties. Journal of Solid Mechanics and Materials Engineering. 2008;2(6):707–17. doi: 10.1299/jmmp.2.707

29. Wang H, Hazell PJ, Shankar K, Morozov EV, Escobedo JP. Impact behaviour of Dyneema® fabric-reinforced composites with different resin matrices. Polym Test. 2017;61:17–26. doi: 10.1016/j.polymertesting.2017.04.026

30. Ertekin M, Erhan K, H. Cut resistance of hybrid para-aramid fabrics for protective gloves. The Journal of The Textile Institute. 2016;107(10):1276–83. doi: 10.1080/00405000.2015.1100820

31. Lentz AK, Burgess GH, Perrin K, Brown JA, Mozingo DW, Lottenberg L. Mortality and Management of 96 Shark Attacks and Development of a Shark Bite Severity Scoring System. The American Surgeon. 2010;76(1):101–6. 20135949

32. Elvin A. Improved wetsuit design for protection in first strike shark attacks. Newcastle, Australia: University of Newcastle; 2018.

33. Motta P, Tricas T, Summers R. Feeding mechanism and functional morphology of the jaws of the lemon shark Negaprion brevirostris (Chondrichthyes, Carcharhinidae). The Journal of Experimental Biology. 1997;200(21):2765–80.

34. Huber DR, Weggelaar CL, Motta PJ. Scaling of bite force in the blacktip shark Carcharhinus limbatus. Zoology. 2006;109(2):109–19. doi: 10.1016/j.zool.2005.12.002 16542832

35. Mara KR, Motta PJ, Huber DR. Bite force and performance in the durophagous bonnethead shark, Sphyrna tiburo. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology. 2010;313A(2):95–105. doi: 10.1002/jez.576 19844984

36. Motta PJ, Wilga CD. Advances in the Study of Feeding Behaviors, Mechanisms, and Mechanics of Sharks. Environ Biol Fishes. 2001;60(1):131–56. doi: 10.1023/a:1007649900712

37. Ferrara TL, Clausen P, Huber DR, McHenry CR, Peddemors V, Wroe S. Mechanics of biting in great white and sandtiger sharks. J Biomech. 2011;44(3):430–5. doi: 10.1016/j.jbiomech.2010.09.028 21129747

38. Wroe S, Huber DR, Lowry M, McHenry C, Moreno K, Clausen P, et al. Three-dimensional computer analysis of white shark jaw mechanics: how hard can a great white bite? Journal of Zoology. 2008;276(4):336–42. doi: 10.1111/j.1469-7998.2008.00494.x

39. Huber DR, Eason TG, Hueter RE, Motta PJ. Analysis of the bite force and mechanical design of the feeding mechanism of the durophagous horn shark Heterodontus francisci. J Exp Biol. 2005;208(18):3553–71.

40. Breeze J, Hunt N, Gibb I, James G, Hepper A, Clasper J. Experimental penetration of fragment simulating projectiles into porcine tissues compared with simulants. Journal of Forensic and Legal Medicine. 2013;20(4):296–9. doi: 10.1016/j.jflm.2012.12.007 23622477

41. Jussila J. Preparing ballistic gelatine—review and proposal for a standard method. Forensic Sci Int. 2004;141(2):91–8. doi: 10.1016/j.forsciint.2003.11.036 15062946

42. Hausmann JT. Sawbones in biomechanical settings—a review. Osteo trauma care. 2006;14(04):259–64. doi: 10.1055/s-2006-942333

43. Ding B, Cazzolato BS, Stanley RM, Grainger S, Costi JJ. Stiffness Analysis and Control of a Stewart Platform-Based Manipulator With Decoupled Sensor–Actuator Locations for Ultrahigh Accuracy Positioning Under Large External Loads. Journal of Dynamic Systems, Measurement, and Control. 2014;136(6):061008–12. doi: 10.1115/1.4027945

44. Ritter E, Levine M. Use of forensic analysis to better understand shark attack behaviour. Journal of Forensic Odontostomatology. 2004;22(2):40–6.

45. May C, Meyer L, Whitmarsh S, Huveneers C. Eyes on the size: accuracy of visual length estimates of white sharks, Carcharodon carcharias. Royal Society Open Science. 2019;6(5):190456. doi: 10.1098/rsos.190456 31218071

46. Anderson M, Gorley R, Clarke K. PERMANOVA+ for PRIMER: Guide to software and statistical methods Plymouth, UK: PRIMER-E Ltd; 2008.

47. Team RDC. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 2018.

48. Bates D, Maechler M, Bolker B, Walker S. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1–7. 2015.

49. Fox J. Effect displays in R for generalised linear models. Journal of Statistical Software. 2003;8(15):1–27.

50. Fox J, Weisberg S, Adler D, Bates D, Baud-Bovy G, Ellison S, et al. Package ‘car’. Vienna: R Foundation for Statistical Computing. 2012.

51. Mazerolle M, Mazerolle M. Package ‘AICcmodavg’: Model selection and multimodel inference based on (Q) AIC (c). R package version 2.0–3; 2015.

52. Burnham KP, Anderson DR. Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods & Research. 2004;33(2):261–304.

53. Huber Daniel R, Claes Julien M, Mallefet J, Herrel A. Is extreme bite performance associated with extreme morphologies in sharks? Physiol Biochem Zool. 2009;82(1):20–8. doi: 10.1086/588177 19006469.

54. Habegger ML, Motta PJ, Huber DR, Dean MN. Feeding biomechanics and theoretical calculations of bite force in bull sharks (Carcharhinus leucas) during ontogeny. Zoology. 2012;115(6):354–64. doi: 10.1016/j.zool.2012.04.007 23040789

55. Huber DR. Cranial biomechanics and feeding performance of sharks. Tampa: University of South Florida; 2006.

56. Huber DR, Dean MN, Summers AP. Hard prey, soft jaws and the ontogeny of feeding mechanics in the spotted ratfish Hydrolagus colliei. Journal of The Royal Society Interface. 2008;5(25):941–53. doi: 10.1098/rsif.2007.1325 18238758

57. Huber DR, Motta PJ. Comparative analysis of methods for determining bite force in the spiny dogfish Squalus acanthias. Journal of Experimental Zoology Part A: Comparative Experimental Biology. 2004;301A(1):26–37. doi: 10.1002/jez.a.20003 14695686

58. Mara KR. Evolution of the hammerhead cephalofoil: shape change, space utilization, and feeding biomechanics in hammerhead sharks (Sphyrnidae). Tampa: University of South Florida; 2010.

59. Martin RA, Hammerschlag N, Collier RS, Fallows C. Predatory behaviour of white sharks (Carcharodon carcharias) at seal island, South Africa. J Mar Biol Assoc UK. 2005;85(5):1121–35. Epub 10/06. doi: 10.1017/S002531540501218X

60. Tricas TC, McCosker JE. Predatory behavior of the white shark (Carcharodon carcharias), with notes on its biology. Proc Calif Acad Sci. 1984;43:221–38.

61. Bergman J, Lajeunesse M, Motta P. Teeth penetration force of the tiger shark Galeocerdo cuvier and sandbar shark Carcharhinus plumbeus. J Fish Biol. 2017;91(2):460–72. doi: 10.1111/jfb.13351 28653362

62. Moyer JK, Bemis WE. Shark teeth as edged weapons: Serrated teeth of three species of selachians. Zoology. 2017;120:101–9. doi: 10.1016/j.zool.2016.05.007 27353190

63. Whitenack LB, Motta PJ. Performance of shark teeth during puncture and draw: Implications for the mechanics of cutting. Biol J Linn Soc. 2010;100(2):271–86. doi: 10.1111/j.1095-8312.2010.01421.x

64. Whitenack LB, Simkins DC, Motta PJ. Biology meets engineering: The structural mechanics of fossil and extant shark teeth. J Morphol. 2011;272(2):169–79. doi: 10.1002/jmor.10903 21210488

Článek vyšel v časopise


2019 Číslo 11