Change in left inferior frontal connectivity with less unexpected harmonic cadence by musical expertise

Autoři: Chan Hee Kim aff001;  June Sic Kim aff002;  Yunhee Choi aff004;  Jeong-Sug Kyong aff005;  Youn Kim aff007;  Suk Won Yi aff008;  Chun Kee Chung aff001
Působiště autorů: Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Science, Seoul, Korea aff001;  Department of Brain and Cognitive Science, Seoul National University College of Natural Science, Seoul, Korea aff002;  Research Institute of Basic Sciences, Seoul National University, Seoul, Korea aff003;  Medical Research Collaborating Center, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea aff004;  Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea aff005;  Audiology Institute, Hallym University of Graduate Studies, Seoul, Korea aff006;  Department of Music, School of Humanities, The University of Hong Kong, Hong Kong, China aff007;  College of Music, Seoul National University, Seoul, Korea aff008;  Western Music Research Institute, Seoul National University, Seoul, Korea aff009;  Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea aff010
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223283


In terms of harmonic expectancy, compared to an expected dominant-to-tonic and an unexpected dominant-to-supertonic, a dominant-to-submediant is a less unexpected cadence, the perception of which may depend on the subject’s musical expertise. The present study investigated how aforementioned 3 different cadences are processed in the networks of bilateral inferior frontal gyri (IFGs) and superior temporal gyri (STGs) with magnetoencephalography. We compared the correct rate and brain connectivity in 9 music-majors (mean age, 23.5 ± 3.4 years; musical training period, 18.7 ± 4.0 years) and 10 non-music-majors (mean age, 25.2 ± 2.6 years; musical training period, 4.2 ± 1.5 years). For the brain connectivity, we computed the summation of partial directed coherence (PDC) values for inflows/outflows to/from each area (sPDCi/sPDCo) in bilateral IFGs and STGs. In the behavioral responses, music-majors were better than non-music-majors for all 3 cadences (p < 0.05). However, sPDCi/sPDCo was prominent only for the dominant-to-submediant in the left IFG. The sPDCi was more strongly enhanced in music-majors than in non-music-majors (p = 0.002, Bonferroni corrected), while the sPDCo was vice versa (p = 0.005, Bonferroni corrected). Our data show that music-majors, with higher musical expertise, are better in identifying a less unexpected cadence than non-music-majors, with connectivity changes centered on the left IFG.

Klíčová slova:

Acoustic signals – Analysis of variance – Bioacoustics – Left hemisphere – Music cognition – Music perception – Syntax – Magnetoencephalography


1. Koelsch S, Jentschke S. Short-term effects of processing musical syntax: an ERP study. Brain research. 2008;1212:55–62. Epub 2008/04/29. doi: 10.1016/j.brainres.2007.10.078 18439987.

2. Kim CH, Lee S, Kim JS, Seol J, Yi SW, Chung CK. Melody effects on ERANm elicited by harmonic irregularity in musical syntax. Brain research. 2014;1560:36–45. doi: 10.1016/j.brainres.2014.02.045 24607297.

3. Kim SG, Kim JS, Chung CK. The effect of conditional probability of chord progression on brain response: an MEG study. PloS one. 2011;6(2):e17337. Epub 2011/03/03. doi: 10.1371/journal.pone.0017337 21364895; PubMed Central PMCID: PMC3045443.

4. Koelsch S, Gunter T, Friederici AD, Schroger E. Brain indices of music processing: "nonmusicians" are musical. Journal of cognitive neuroscience. 2000;12(3):520–41. Epub 2000/08/10. doi: 10.1162/089892900562183 10931776.

5. Rohrmeier MA. A generative grammar approach to diatonic harmonic structure. Proceedings SMC'07, 4th Sound and Music Computing Conference. 2007.

6. Murphy HA, Stringham EJ. Creative harmony and musicianship; an introduction to the structure of music. New York,: Prentice-Hall; 1951. xix, 618 p. p.

7. Piston W, DeVoto M. Harmony. 5th ed. New York: Norton; 1987. xvi, 575 p. p.

8. Baccala LA, Sameshima K. Partial directed coherence: a new concept in neural structure determination. Biological cybernetics. 2001;84(6):463–74. Epub 2001/06/22. doi: 10.1007/PL00007990 11417058.

9. Taulu S, Simola J. Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Physics in medicine and biology. 2006;51(7):1759–68. Epub 2006/03/23. doi: 10.1088/0031-9155/51/7/008 16552102.

10. Taulu S, Hari R. Removal of magnetoencephalographic artifacts with temporal signal-space separation: demonstration with single-trial auditory-evoked responses. Human brain mapping. 2009;30(5):1524–34. Epub 2008/07/29. doi: 10.1002/hbm.20627 18661502.

11. Maess B, Koelsch S, Gunter TC, Friederici AD. Musical syntax is processed in Broca's area: an MEG study. Nature neuroscience. 2001;4(5):540–5. doi: 10.1038/87502 11319564.

12. Koelsch S, Jentschke S. Differences in electric brain responses to melodies and chords. Journal of cognitive neuroscience. 2010;22(10):2251–62. Epub 2009/08/26. doi: 10.1162/jocn.2009.21338 19702466.

13. Patterson RD, Uppenkamp S, Johnsrude IS, Griffiths TD. The processing of temporal pitch and melody information in auditory cortex. Neuron. 2002;36(4):767–76. Epub 2002/11/21. doi: 10.1016/s0896-6273(02)01060-7 12441063.

14. Dohn A, Garza-Villarreal EA, Chakravarty MM, Hansen M, Lerch JP, Vuust P. Gray- and white-matter anatomy of absolute pitch possessors. Cereb Cortex. 2015;25(5):1379–88. doi: 10.1093/cercor/bht334 24304583.

15. Schneider P, Sluming V, Roberts N, Scherg M, Goebel R, Specht HJ, et al. Structural and functional asymmetry of lateral Heschl's gyrus reflects pitch perception preference. Nature neuroscience. 2005;8(9):1241–7. Epub 2005/08/24. doi: 10.1038/nn1530 16116442.

16. Janata P, Birk JL, Van Horn JD, Leman M, Tillmann B, Bharucha JJ. The cortical topography of tonal structures underlying Western music. Science. 2002;298(5601):2167–70. Epub 2002/12/14. doi: 10.1126/science.1076262 12481131.

17. Sammler D, Koelsch S, Ball T, Brandt A, Elger CE, Friederici AD, et al. Overlap of musical and linguistic syntax processing: intracranial ERP evidence. Annals of the New York Academy of Sciences. 2009;1169:494–8. Epub 2009/08/14. doi: 10.1111/j.1749-6632.2009.04792.x 19673829.

18. Patel AD, Balaban E. Human pitch perception is reflected in the timing of stimulus-related cortical activity. Nature neuroscience. 2001;4(8):839–44. doi: 10.1038/90557 11477431.

19. Sammler D, Koelsch S, Friederici AD. Are left fronto-temporal brain areas a prerequisite for normal music-syntactic processing? Cortex; a journal devoted to the study of the nervous system and behavior. 2011;47(6):659–73. Epub 2010/06/24. doi: 10.1016/j.cortex.2010.04.007 20570253.

20. Obleser J, Meyer L, Friederici AD. Dynamic assignment of neural resources in auditory comprehension of complex sentences. NeuroImage. 2011;56(4):2310–20. doi: 10.1016/j.neuroimage.2011.03.035 21421059.

21. Nan Y, Knosche TR, Zysset S, Friederici AD. Cross-cultural music phrase processing: an fMRI study. Human brain mapping. 2008;29(3):312–28. doi: 10.1002/hbm.20390 17497646.

22. Evers S, Dannert J, Rodding D, Rotter G, Ringelstein EB. The cerebral haemodynamics of music perception. A transcranial Doppler sonography study. Brain: a journal of neurology. 1999;122 (Pt 1):75–85. doi: 10.1093/brain/122.1.75 10050896.

23. Loui P, Li HC, Hohmann A, Schlaug G. Enhanced cortical connectivity in absolute pitch musicians: a model for local hyperconnectivity. Journal of cognitive neuroscience. 2011;23(4):1015–26. Epub 2010/06/03. doi: 10.1162/jocn.2010.21500 20515408; PubMed Central PMCID: PMC3012137.

24. Jancke L, Langer N, Hanggi J. Diminished whole-brain but enhanced peri-sylvian connectivity in absolute pitch musicians. Journal of cognitive neuroscience. 2012;24(6):1447–61. Epub 2012/04/25. doi: 10.1162/jocn_a_00227 22524277.

25. Bhattacharya J, Petsche H. Phase synchrony analysis of EEG during music perception reveals changes in functional connectivity due to musical expertise. Signal Processing. 2005;85(11):2161–77. doi: 10.1016/j.sigpro.2005.07.007

26. Huron DB. Sweet anticipation: music and the psychology of expectation. Cambridge, Mass.: MIT Press; 2006. xii, 462 p. p.

27. James CE, Britz J, Vuilleumier P, Hauert CA, Michel CM. Early neuronal responses in right limbic structures mediate harmony incongruity processing in musical experts. NeuroImage. 2008;42(4):1597–608. Epub 2008/07/22. doi: 10.1016/j.neuroimage.2008.06.025 18640279.

28. Biancorosso G. Whose Phenomenology of Music? David Huron's Theory of Expectation. Music and Letters. 2008;89(3):396–404. doi: 10.1093/ml/gcn015

29. Koelsch S, Schmidt BH, Kansok J. Effects of musical expertise on the early right anterior negativity: an event-related brain potential study. Psychophysiology. 2002;39(5):657–63. Epub 2002/09/19. doi: 10.1017.S0048577202010508 12236333.

30. Jentschke S, Koelsch S. Musical training modulates the development of syntax processing in children. NeuroImage. 2009;47(2):735–44. Epub 2009/05/12. doi: 10.1016/j.neuroimage.2009.04.090 19427908.

31. Sears D, Caplin WE, McAdams S. Perceiving the Classical Cadence. Music Perception: An Interdisciplinary Journal. 2014;31(5):397–417. doi: 10.1525/mp.2014.31.5.397

Článek vyšel v časopise


2019 Číslo 11