Mapping developmental QTL for plant height in soybean [Glycine max (L.) Merr.] using a four-way recombinant inbred line population

Autoři: Hong Xue aff001;  Xiaocui Tian aff001;  Kaixin Zhang aff001;  Wenbin Li aff001;  Zhongying Qi aff001;  Yanlong Fang aff001;  Xiyu Li aff001;  Yue Wang aff001;  Jie Song aff001;  Wen-Xia Li aff001;  Hailong Ning aff001
Působiště autorů: Key Laboratory of Soybean Biology, Ministry of Education, Harbin, China aff001;  Key Laboratory of Soybean Biology and Breeding / Genetics, Ministry of Agriculture, Harbin, China aff002;  College of Crop Science, Northeast Agricultural University, Harbin, Heilongjiang province, China aff003;  Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Keshan,Heilongjiang, China aff004
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224897


Plant height (PH) is an important trait in soybean, as taller plants may have higher yields but may also be at risk for lodging. Many genes act jointly to influence PH throughout development. To map the quantitative trait loci (QTL) controlling PH, we used the unconditional variable method (UVM) and conditional variable method (CVM) to analyze PH data for a four-way recombinant inbred line (FW-RIL) population derived from the cross of (Kenfeng14 × Kenfeng15) × (Heinong48 × Kenfeng19). We identified 7, 8, 16, 19, 15, 27, 17, 27, 22, and 24 QTL associated with PH at 10 developmental stages, respectively. These QTL mapped to 95 genomic regions. Among these QTL, 9 were detected using UVM and CVM, and 89 and 66 were only detected by UVM or CVM, respectively. In total, 36 QTL controlling PH were detected at multiple developmental stages and these made unequal contributions to genetic variation throughout development. Among 19 novel regions discovered in our study, 7 could explain over 10% of the phenotypic variation and contained only one single QTL. The unconditional and conditional QTL detected here could be used in molecular design breeding across the whole developmental procedure.

Klíčová slova:

Gene mapping – Genetic polymorphism – Heredity – Inbred strains – Phenotypes – Plant breeding – Quantitative trait loci – Soybean


1. Lee S, Jun TH, Michel AP, Mian, MR. SNP markers linked to QTL conditioning plant height, lodging, and maturity in soybean. Euphytica. 2015;203: 521–532. doi: 10.1007/s10681-014-1252-8 PMID: 24166318

2. Zhang WK, Wang YJ, Luo GZ, Zhang JS, He CY, Wu XL, et al. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor. Appl. Genet. 2004;108: 1131–1139. doi: 10.1007/s00122-003-1527-2 15067400

3. Orf JH, Chase K, Adler FR, Mansur LM, Lark KG. Genetics of soybean agronomic traits: II. Interactions between yield quantitative trait loci in soybean. Crop Sci. 1999; 39(6):1652–57. doi: 10.2135/cropsci1999.3961652x

4. Specht JE, Chase K, Macrander M, Graefa GL, Chungd J, Markwella JP, et al. Soybean response to water. Crop Sci. 2001; 41(2):493–509. doi: 10.2135/cropsci2001.412493x

5. Yuan J, Njiti VN, Meksem K, Iqbal MJ, Triwitayakorn K, Kassem MA, et al. Quantitative trait loci in two soybean recombinant inbred line populations segregating for yield and disease resistance. Crop Sci. 2002;42(1):271–7. doi: 10.2135/cropsci2002.2710 11756285

6. Wang D, Graef GL, Procopiuk AM, Diers BW. Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theor App Genet. 2004;108(3):458–67. doi: 10.1007/s00122-003-1449-z 14504749

7. Kabelka EA, Diers BW, Fehr WR, LeRoy AR, Baianu IC, You T, et al. Putative alleles for increased yield from soybean plant introductions. Crop Sci, 2004; 44(3):784–91. doi: 10.2135/cropsci2004.7840

8. Sun D, Li W, Zhang Z, Chen Q, Ning H, Qiu L, et al. Quantitative trait loci analysis for the developmental behavior of soybean (Glycine max L. Merr.). Theor. Appl. Genet. 2006;112(4):665–73. doi: 10.1007/s00122-005-0169-y 16365761

9. Reinprecht Y, Poysa VW, Yu K, Rajcan I, Ablett GR, Pauls KP. Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm. Genome. 2006; 49(12):1510–27. doi: 10.1139/g06-112 17426766

10. Alcivar A, Jacobson J, Rainho J, Meksem K, Lightfoot DA, Kassem M A. Genetic analysis of soybean plant height, hypocotyl and internode lengths. J. Agric. Food. Environ. Sci. 2007;1(1):1–20.

11. Chen Q, Zhang Z, Liu C, Xin D, Qiu H, Shan D, et al. QTL analysis of major agronomic traits in soybean. Agric. Sci. in China. 2007;6(4):399–405. doi: 10.1016/S1671-2927(07)60062-5

12. Guzman PS, Diers BW, Neece DJ, St Martin SK, LeRoy AR, Grau CR, et al. QTL associated with yield in three backcross-derived populations of soybean. Crop Sci. 2007;47(1):111–22. doi: 10.2135/cropsci2006.01.0003

13. Li W, Zheng DH. Van K, Lee SH. QTL mapping for major agronomic traits across two years in soybean (Glycine max L. Merr.). Crop Sci. Biotechnol. 2008; 11:171–90.

14. Palomeque L, Liu LJ, Li W, Hedges BR, Cober ER, Smid MP, et al. Validation of mega-environment universal and specific QTL associated with seed yield and agronomic traits in soybeans. Theor. Appl. Genet. 2010;120(5):997–1003. doi: 10.1007/s00122-009-1227-7 20012262

15. Liu W, Kim MY, Van K, Lee YH, Li H, Liu X, et al. QTL identification of yield-related traits and their association with flowering and maturity in soybean. J. Crop Sci. Biotechnol. 2011;14(1):65–70. doi: 10.1007/s12892-010-0115-7

16. Kim KS, Diers BW, Hyten DL, Mian MR, Shannon JG, Nelson RL. Identification of positive yield QTL alleles from exotic soybean germplasm in two backcross populations. Theor. Appl. Genet. 2012;125(6):1353–69. doi: 10.1007/s00122-012-1944-1 22869284

17. Eskandari M, Cober ER, Rajcan I. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield. Theor. Appl. Genet. 2013;126(6):1677–87. doi: 10.1007/s00122-013-2083-z 23536049

18. Rossi ME, Orf JH, Liu LJ, Dong Z, Rajcan I. Genetic basis of soybean adaptation to North American vs. Asian mega-environments in two independent populations from Canadian × Chinese crosses. Theor. Appl. Genet. 2013;126(7):1809–23. doi: 10.1007/s00122-013-2094-9 23595202

19. Xu Y. Quantitative trait loci: separating, pyramiding, and cloning. Plant Breed. Rev. 1997;15:85–139. doi: 10.1002/9780470650097.ch4

20. Jiang Z, Ding J, Han Y, Teng W, Zhang Z, Li W. Identification of QTL underlying mass filling rate at different developmental stages of soybean seed. Euphytica. 2013;189(2):249–60. doi: 10.1007/s10681-012-0794-x

21. Jiang Z, Han Y, Teng W, Zhang Z, Sun D, Li Y, et al. Identification of QTL underlying the filling rate of protein at different developmental stages of soybean seed. Euphytica. 2010;175(2):227–36. doi: 10.1007/s10681-010-0172-5

22. Le BH, Wagmaister JA, Kawashima T, Bui AQ, Harada JJ, Goldberg RB. Using genomics to study legume seed development. Plant Physiol. 2007;144(2):562–74. doi: 10.1104/pp.107.100362 pp. 107. 100362 17556519

23. Atchley WR, Zhu J. Developmental quantitative genetics, conditional epigenetic variability and growth in mice. Genetics. 1997;147(2):765–76. 9335611

24. Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics. 1995;141(141):1633–39. 8601500

25. Ye Z, Lu Z, Zhu J. Genetic analysis for developmental behavior of some seed quality traits in upland cotton (Gossypum hirsutum L.). Euphytica. 2003;129(2):183–91.

26. Yan J, Zhu J, He C, Benmoussa M, Wu P. Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.). Theor. Appl. Genet. 1998;97(1):267–74. doi: 10.1007/s10709-010-9471-y PMID:20623365

27. Yan J, Zhu J, He C, Benmoussa M, Wu P. Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.). Genetics. 1998;150(3):1257–65. 9799277

28. Wu W, Li W, Tang D, Lu H, Worland AJ. Time-related mapping of quantitative trait loci underlying tiller number in rice. Genetics. 1999;151(1):297–303. 9872968

29. Cao G, Zhu J, He C, Gao Y, Yan J, Wu P. Impact of epistasis and QTL× environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.). Theor. Appl. Genet. 2001;103(1):153–60. doi: 10.1007/s001220100536

30. Yang G, Xing Y, Li S, Ding J, Yue B, Deng K, et al. Molecular dissection of developmental behavior of tiller number and plant height and their relationship in rice (Oryza sativa L.). Hereditas. 2006;143(2006):236–45. doi: 10.1111/j.2006.0018-0661.01959.x 17362360

31. Liu G, Zeng R, Zhu H, Zhang Z, Ding X, Zhao F, et al. Dynamic expression of nine QTL for tiller number detected with single segment substitution lines in rice. Theor. Appl. Genet. 2009;118(3):443–53. doi: 10.1007/s00122-008-0911-3 18949451

32. Liu Z, Tang J, Wang C, Tian G, Wei X, Hu Y, et al. QTL analysis of plant height under N-stress and N-input at different stages in maize. Acta Agron. Sin. 2007;5:782–9.

33. Yang J, Zhang J, Liu K, Wang Z, Liu L. Abscisic acid and ethylene interact in wheat grains in response to soil drying during grain filling. New Phytol. 2006;171(2):293–303. doi: 10.1111/j.1469-8137.2006.01753.x 16866937

34. Wang Z, Wu X, Qian R, Chang X, Li R, Jing R. QTL mapping for developmental behavior of plant height in wheat (Triticum aestivum, L.). Euphytica. 2010;174(3):447–58. doi: 10.1007/s10681-010-0166-3

35. Wu X, Wang Z, Chang X, Jing R. Genetic dissection of the developmental behaviors of plant height in wheat under diverse water regimes. J. Exp. Bot. 2010;61(11): 2923–37. doi: 10.1093/jxb/erq117 20497970

36. Li W, Sun D, Du Y, Chen Q, Zhang Z, Qiu L, et al. Quantitative trait loci underlying the development of seed composition in soybean (Glycine max L. Merr.). Genome. 2007; 50(50):1067–77. doi: 10.1139/G07-080 18059535

37. Xin D, Qiu H, Shan D, Shan C, Liu C, Hu G, et al. Analysis of quantitative trait loci underlying the period of reproductive growth stages in soybean (Glycine max [L.] Merr.). Euphytica. 2008;162(2):155–65. doi: 10.1007/s10681-008-9652-2

38. Han Y, Teng W, Sun D, Du Y, Qiu L, Xu X, et al. Impact of epistasis and QTL x environment interaction on the accumulation of seed mass of soybean (Glycine max L. Merr.). Genet. Res. 2008;90(6):481–91. doi: 10.1017/S0016672308009865 19123966

39. Teng W, Han Y, Du Y, Sun D, Zhang Z, Qiu L, et al. QTL analyses of seed weight during the development of soybean (Glycine max L. Merr.). Heredity. 2009;102(4):372–80. doi: 10.1038/hdy.2008.108 18971958

40. Han Y, Xie D, Teng W, Zhang S, Chang W, Li W. Dynamic QTL analysis of linolenic acid content in different developmental stages of soybean seed. Theor. Appl. Genet. 2011; 122(8):1481–88. doi: 10.1007/s00122-011-1547-2 21344183

41. Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L. Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor. Appl. Genet. 2006;113(2):206–24. doi: 10.1007/s00122-006-0287-1 16791688

42. Muranty H. Power of tests for quantitative trait loci detection using full-sib families in different schemes. Heredity. 1996;76(2):156–65. doi: 10.1038/hdy.1996.23

43. Xu S. Mapping quantitative trait loci using four-way crosses. Genet. Res. 1996;68(2):175–81. doi: 10.1017/S0016672300034066

44. Qin H, Guo W, Zhang Y M, Zhang T. QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. Theor. Appl. Genet. 2008;117(6):883–94. doi: 10.1007/s00122-008-0828-x 18604518

45. Takavar S, Rahimian H, Kazemitabar K. Agrobacterium mediated transformation of maize (Zea mays L.). J Sci Islam Repub Iran.2010;21:21–9. Agrobacterium mediated transformation of maize (Zea mays L.)

46. Hayashi T, Ohyama A, Iwata H. Bayesian QTL mapping for recombinant inbred lines derived from a four-way cross. Euphytica. 2012;183(3):277–87. doi: 10.1007/s10681-011-0345-x

47. Rao S, Xu S. Mapping quantitative trait loci for ordered categorical traits in four-way crosses. Heredity. 1998;81(2):214–24. doi: 10.1046/j.1365-2540.1998.00378.x 9750263

48. Qin H, Zhang T. Genetic linkage mapping based on SSR marker with a four-way cross population in Gossypium hirsutum L. J. Nanjing Agric. Univ. 2008; 31(4):13–9.

49. Paulo MJ, Boer M, Huang X, Koornneef M, Van Eeuwijk F. A mixed model QTL analysis for a complex cross population consisting of a half diallel of two-way hybrids in Arabidopsis thaliana: analysis of simulated data. Euphytica. 2008;161(1–2):107–14. doi: 10.1007/s10681-008-9665-x

50. Bohlen M, Bailoo J, Jordan R, Wahlsten D. Hippocampal commissure defects in crosses of four inbred mouse strains with absentcorpus callosum. Genes, Brain Behav. 2012;11(7):757–66. doi: 10.1111/j.1601-183X.2012.00802.x 22537318

51. Harmegnies N, Davin F, De S, Buys N, Georges M, Coppieters W. Results of a whole-genome quantitative trait locus scan for growth, carcass composition and meat quality in a porcine four-way cross. Anim. Genet. 2006;37(6):543–53. doi: 10.1111/j.1365-2052.2006.01523.x 17121599

52. Ning H, Bai X, Li W, Xue H, Zhuang X, Li W-X, and Liu C. Mapping QTL protein and oil contents using population from four-way recombinant inbred lines for soybean (Glycine max L. Merr.). ACTA AGRONOMICA SINICA 2016;42(11): 1609–1617 doi: 10.3724/SP.J.1006.2016.01609

53. Liu S, Xue H, Zhang K, Wang P, Su D, Li W, et al. Mapping QTL affecting the vertical distribution and seed set of soybean [Glycine max (L.) Merr.] pods. The Crop Journal.

54. Zhang S, Meng L, Wang J, Zhang L. Background controlled QTL mapping in pure-line genetic populations derived from four-way crosses. Heredity. 2017; 119:256–264; doi: 10.1038/hdy.2017.42 28722705

55. McCouch SR, Cho YG, Yano PE, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newslett. 1997;14:11–13.

56. Lee SH, Bailey MA, Mian MAR, Carter TE, Ashley DA, Hussey RS, et al. Molecular markers associated with soybean plant height, lodging, and maturity across locations. Crop Sci. 1996;36(3):728–35. doi: 10.2135/cropsci1996.0011183X003600030035x

57. Palomeque L, Liu LJ, Li WB, Hedges B, Cober ER, Rajcan I. QTL in mega-environments: II. Agronomic trait QTL co-localized with seed yield QTL detected in a population derived from a cross of high-yielding adapted × high-yielding exotic soybean lines. Theor. Appl. Genet. 2009;119(3):429–36. doi: 10.1007/s00122-009-1048-8 19462149

58. Pathan SM, Vuong T, Clark K, Lee JD, Shannon JG, Roberts CA, et al. Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean. Crop Sci. 2013;53(3):765–74. doi: 10.2135/cropsci2012.03.0153

59. Yao D, Liu Z, Zhang J, Liu S, Qu J, Guan S, et al. Analysis of quantitative trait loci for main plant traits in soybean. Genet. Mol. Res. 2015;14(2):6101–9. doi: 10.4238/2015.June.8.8 26125811

60. Peat WE, Whittington WJ. Genetic analysis of growth in tomato: segregating generations. Ann. Bot. 1965;29(4):725–38. doi: 10.1093/oxfordjournals.aob.a083985

61. Wu G. Analyses of gene effects for three quantitative characters at different developmental stages in maize. J. Acta Genet. Sin. 1987;14(5):363–9.

62. Xu Y, Shen Z. Diallel analysis of tiller number at different growth stages in rice (Oryza sativa L.). Theor. Appl. Genet.1991;83(2):243–9. doi: 10.1007/BF00226258 24202365

63. Song Q, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB, A new integrated genetic linkage map of the soybean, Theor. Appl. Genet. 2004;109:122–128. doi: 10.1007/s00122-004-1602-3 14991109

Článek vyšel v časopise


2019 Číslo 11