The effects of prolonged single night session of videogaming on sleep and declarative memory

Autoři: Miria Hartmann aff001;  Michael Alexander Pelzl aff001;  Peter Herbert Kann aff002;  Ulrich Koehler aff001;  Manfred Betz aff003;  Olaf Hildebrandt aff001;  Werner Cassel aff001
Působiště autorů: Department of Pneumology, Intensive Care and Sleep Medicine, Philipps-University, Marburg, Germany aff001;  Centre for Endocrinology, Diabetology & Osteology, Philipps-University, Marburg, Germany aff002;  Faculty of Health Science, University of Applied Sciences, Gießen, Germany aff003
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224893


Use of electronic media is widespread among adolescents. Many male adolescents spend a major part of their evenings playing video games. The increased exposure to artificial light as well as the exciting nature of this pastime is under suspicion to impair sleep. Sleep is considered to be important for memory consolidation, so there is also a potential risk for memory impairment due to video gaming. As learning and gaining knowledge is a very important part of adolescence, we decided to study the effects of prolonged video gaming on sleep and memory. The study was structured in a repeated measures design. Eighteen male participants played either the violent video game “Counter Strike: Global Offensive” or the board game “Monopoly” for five hours each on two Saturday nights. The game evenings were followed by sleep studies. Memory testing and vigilance evaluation was performed the next morning. During the course of the study, saliva samples were taken to determine melatonin and cortisol levels. The results of this crossover study showed slightly reduced sleep efficiency after “Counter Strike: Global Offensive” (-3.5%, p = .017) and impaired declarative memory recall (p = .005) compared to “Monopoly”. Melatonin levels at bedtime were lower after “Counter Strike: Global Offensive” (p = .005), cortisol levels were elevated while playing the video game (p = .031). Negative effects on sleep were not strong but consistent with more wake after sleep onset (+12 min) and a higher arousal index after “Counter Strike: Global Offensive”. We conclude that excessive video gaming in the evening can contribute to worsened sleep and impaired memory in male adolescents.

Klíčová slova:

Cortisol – Games – Learning – Melatonin – Memory recall – Sleep – Video games – Monopolies


1. Custers K, van den Bulck J. Television viewing, internet use, and self-reported bedtime and rise time in adults: implications for sleep hygiene recommendations from an exploratory cross-sectional study. Behav Sleep Med 2012; 10(2):96–105. doi: 10.1080/15402002.2011.596599 22468928

2. Seitz C, Schüz J, Toschke AM, Harth K, Letzel S, Bühler E et al. Schlafenszeiten, Fernseh- und Computergewohnheiten von Grundschulkindern in Deutschland. Das Gesundheitswesen 2007; 69(3):151. Available from: URL: doi: 10.1055/s-2007-971061

3. Cain N, Gradisar M. Electronic media use and sleep in school-aged children and adolescents: A review. Sleep Med 2010; 11(8):735–42. doi: 10.1016/j.sleep.2010.02.006 20673649

4. Strube TB, In-Albon T, Weeß H-G. Machen Smartphones Jugendliche und junge Erwachsene schlaflos? Somnologie 2016; 20(1):61–6.

5. Cajochen C, Frey S, Anders D, Spati J, Bues M, Pross A et al. Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance. J Appl Physiol (1985) 2011; 110(5):1432–8.

6. Wood B, Rea MS, Plitnick B, Figueiro MG. Light level and duration of exposure determine the impact of self-luminous tablets on melatonin suppression. Appl Ergon 2013; 44(2):237–40. doi: 10.1016/j.apergo.2012.07.008 22850476

7. Medienpädagogischer Forschungsverbund Südwest. JIM 2017 Jugend, Information, (Multi-)Media: Basisstudie zum Medienumgang 12-bis 19-Jähriger in Deutschland 2017 [cited 2019 Jul 29]. Available from: URL:

8. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5. 5. ed. Washington, DC: American Psychiatric Publ; 2013.

9. World Health Organization. The ICD-11 Classification of Mental and Behavioral Disorders: Diagnostic Criteria for Research. Geneva, Switzerland; 2018 [cited 2019 Jul 29]. Available from: URL:

10. Sugaya N, Shirasaka T, Takahashi K, Kanda H. Bio-psychosocial factors of children and adolescents with internet gaming disorder: a systematic review. Biopsychosoc Med 2019; 13:3. doi: 10.1186/s13030-019-0144-5 30809270

11. Bernaldo-de-Quirós M, Labrador-Méndez M, Sánchez-Iglesias I, Labrador FJ. Measurement instruments of online gaming disorder in adolescents and young people according to DSM-5 criteria: a systematic review. Adicciones 2019:1277. doi: 10.20882/adicciones.1277 31342078

12. Weaver E, Gradisar M, Dohnt H, Lovato N, Douglas P. The effect of presleep video-game playing on adolescent sleep. J Clin Sleep Med 2010; 6(2):184–9. 20411697

13. Higuchi S, Motohashi Y, Liu Y, Maeda A. Effects of playing a computer game using a bright display on presleep physiological variables, sleep latency, slow wave sleep and REM sleep. J Sleep Res 2005; 14(3):267–73. doi: 10.1111/j.1365-2869.2005.00463.x 16120101

14. King DL, Gradisar M, Drummond A, Lovato N, Wessel J, Micic G et al. The impact of prolonged violent video-gaming on adolescent sleep: an experimental study. J Sleep Res 2013; 22(2):137–43. doi: 10.1111/j.1365-2869.2012.01060.x 23137332

15. Peracchia S, Curcio G. Exposure to video games: effects on sleep and on post-sleep cognitive abilities. A sistematic review of experimental evidences. Sleep Sci 2018; 11(4):302–14. doi: 10.5935/1984-0063.20180046 30746049

16. Aliyari H, Kazemi M, Tekieh E, Salehi M, Sahraei H, Daliri MR et al. The Effects of Fifa 2015 Computer Games on Changes in Cognitive, Hormonal and Brain Waves Functions of Young Men Volunteers. Basic Clin Neurosci 2015; 6(3):193–201. 26904177

17. Maski KP. Sleep-Dependent Memory Consolidation in Children. Seminars in Pediatric Neurology 2015; 22(2):130–4. doi: 10.1016/j.spen.2015.03.008 26072343

18. Goerke M, Cohrs S, Rodenbeck A, Grittner U, Sommer W, Kunz D. Declarative memory consolidation during the first night in a sleep lab: the role of REM sleep and cortisol. Psychoneuroendocrinology 2013; 38(7):1102–11. doi: 10.1016/j.psyneuen.2012.10.019 23246326

19. Liu S, Kuschpel MS, Schad DJ, Heinz A, Rapp MA. Differential Effects of Music and Video Gaming During Breaks on Auditory and Visual Learning. Cyberpsychol Behav Soc Netw 2015; 18(11):647–53. doi: 10.1089/cyber.2015.0140 26448497

20. Bennion KA, Mickley Steinmetz KR, Kensinger EA, Payne JD. Sleep and cortisol interact to support memory consolidation. Cereb Cortex 2015; 25(3):646–57. doi: 10.1093/cercor/bht255 24072888

21. Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 1991; 14(6):540–5. doi: 10.1093/sleep/14.6.540 1798888

22. American Academy of Sleep Medicine, editor. The AASM Manual for the Scoring of Sleep and Associates Events; 2015.

23. Helmstaedter C, Lendt M, Lux S. Verbaler Lern- und Merkfähigkeitstest. Göttingen: Hogrefe; 2001.

24. Hoddes E, Zarcone V, Smythe H, Phillips R, Dement WC. Quantification of Sleepiness: A New Approach. Psychophysiology 1973; 10(4):431–6. doi: 10.1111/j.1469-8986.1973.tb00801.x 4719486

25. Wilhelm B, Wilhelm H, Lüdtke H, Adler M, Streicher P. Pupillographie zur objektiven Vigilanzprüfung. Methodische Probleme und Lösungsansätze. Ophthalmologe 1996; 93(4):446–50. 8963145

26. Cassel W, Ploch T, Kesper K, Speicher T, Conradt R, Faust M et al. Vigilance in patients with obstructive sleep apnea and surgical patients. Somnologie 2011; 15(2):97–104.

27. Cohen J. A power primer. Psychological Bulletin 1992; 112(1):155–9. doi: 10.1037//0033-2909.112.1.155 19565683

28. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hoboken: Taylor and Francis; 1988. Available from: URL:

29. Dworak M, Schierl T, Bruns T, Strüder HK. Impact of singular excessive computer game and television exposure on sleep patterns and memory performance of school-aged children. Pediatrics 2007; 120(5):978–85. doi: 10.1542/peds.2007-0476 17974734

30. Medienpädagogischer Forschungsverbund Südwest. JIM 2016 Jugend, Information, (Multi-) Media: Basisstudie zum Medienumgang 12- bis 19-Jähriger in Deutschland 2016 [cited 2019 Jul 29]. Available from: URL:

31. Betz M, Preißler L, Koehler U. Medienkonsum und Schlaf bei Jugendlichen. Brücken bauen—Kinderschlafmedizin verbindet. Aktuelle Kinderschlafmedizin 2017, Dresden 2017:146–51.

32. Dumay N. Sleep not just protects memories against forgetting, it also makes them more accessible. Cortex 2016; 74:289–96. doi: 10.1016/j.cortex.2015.06.007 26227582

33. Deliens G, Schmitz R, Caudron I, Mary A, Leproult R, Peigneux P. Does recall after sleep-dependent memory consolidation reinstate sensitivity to retroactive interference? PLoS ONE 2013; 8(7):e68727. doi: 10.1371/journal.pone.0068727 23874738

34. Ivarsson M, Anderson M, Akerstedt T, Lindblad F. Playing a violent television game affects heart rate variability. Acta Paediatr 2009; 98(1):166–72. doi: 10.1111/j.1651-2227.2008.01096.x 19006532

35. Ivarsson M, Anderson M, Åkerstedt T, Lindblad F. The effect of violent and nonviolent video games on heart rate variability, sleep, and emotions in adolescents with different violent gaming habits. Psychosom Med 2013; 75(4):390–6. doi: 10.1097/PSY.0b013e3182906a4c 23645706

36. Tosini G, Ferguson I, Tsubota K. Effects of blue light on the circadian system and eye physiology. Mol Vis 2016; 22:61–72. 26900325

37. Zenon A, Sidibe M, Olivier E. Pupil size variations correlate with physical effort perception. Front Behav Neurosci 2014; 8:286. doi: 10.3389/fnbeh.2014.00286 25202247

38. Gaddy JR, Rollag MD, Brainard GC. Pupil size regulation of threshold of light-induced melatonin suppression. J Clin Endocrinol Metab 1993; 77(5):1398–401. doi: 10.1210/jcem.77.5.8077340 8077340

39. Higuchi S, Motohashi Y, Liu Y, Ahara M, Kaneko Y. Effects of VDT tasks with a bright display at night on melatonin, core temperature, heart rate, and sleepiness. J Appl Physiol (1985) 2003; 94(5):1773–6.

40. Tsigos C, Chrousos GP. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res 2002; 53(4):865–71. doi: 10.1016/s0022-3999(02)00429-4 12377295

41. Betz M, Berschin G, Koehler U. Wie fit sind unsere Auszubildenden? Dokumentation der 56. wissenschaftlichen Tagung der DGAUM 2016:256–9.

Článek vyšel v časopise


2019 Číslo 11