Perception and control of low cable operation forces in voluntary closing body-powered upper-limb prostheses

Autoři: Mona Hichert aff001;  David A. Abbink aff002;  Alistair N. Vardy aff001;  Corry K. van der Sluis aff003;  Wim G. M. Janssen aff004;  Michael A. H. Brouwers aff005;  Dick H. Plettenburg aff001
Působiště autorů: Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands aff001;  Department of Cognitive Robotics, Delft University of Technology, Delft, The Netherlands aff002;  University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Groningen, The Netherlands aff003;  Rijndam Rehabilitation Centre Rotterdam, Department of Rehabilitation Medicine Erasmus MC, Rotterdam, The Netherlands aff004;  Rehabilitation Institute De Hoogstraat, Utrecht, The Netherlands aff005
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225263


Operating a body-powered prosthesis can be painful and tiring due to high cable operation forces, illustrating that low cable operation forces are a desirable design property for body-powered prostheses. However, lower operation forces might negatively affect controllability and force perception, which is plausible but not known. This study aims to quantify the accuracy of cable force perception and control for body-powered prostheses in a low cable operation force range by utilizing isometric and dynamic force reproduction experiments. Twenty-five subjects with trans-radial absence conducted two force reproduction tasks; first an isometric task of reproducing 10, 15, 20, 25, 30 or 40 N and second a force reproduction task of 10 and 20 N, for cable excursions of 10, 20, 40, 60 and 80 mm. Task performance was quantified by the force reproduction error and the variability in the generated force. The results of the isometric experiment demonstrated that increasing force levels enlarge the force variability, but do not influence the force reproduction error for the tested force range. The second experiment showed that increased cable excursions resulted in a decreased force reproduction error, for both tested force levels, whereas the force variability remained unchanged. In conclusion, the design recommendations for voluntary closing body-powered prostheses suggested by this study are to minimize cable operation forces: this does not affect force reproduction error but does reduce force variability. Furthermore, increased cable excursions facilitate users with additional information to meet a target force more accurately.

Klíčová slova:

Classical mechanics – Fatigue – Prosthetics – Questionnaires – Shoulders – Spring – Stiffness – Vision


1. Simpson D. The choice of control system for the multimovement prosthesis: Extended physiological proprioception (e.p.p.). In: Herberts P, Kadefors R, Magnusson R, Petersen I, editors. The Control of Upper-Extremity Prostheses and Orthoses. Springfield; 1974. pp. 146–150.

2. Mugge W, Abbink DA, Schouten AC, Van Der Helm FCT, Arendzen JH, Meskers CGM. Force control in the absence of visual and tactile feedback. Experimental Brain Research. 2013;224: 635–645. doi: 10.1007/s00221-012-3341-z 23223780

3. Smit G, Plettenburg DH. Efficiency of voluntary closing hand and hook prostheses. Prosthetics and Orthotics International. 2010;34: 411–427. doi: 10.3109/03093646.2010.486390 20849359

4. Smit G, Bongers RM, Van der Sluis CK, Plettenburg DH. Efficiency of voluntary opening hand and hook prosthetic devices: 24 years of development? The Journal of Rehabilitation Research and Development. 2012;49: 523. doi: 10.1682/jrrd.2011.07.0125 22773256

5. Biddiss E, Beaton D, Chau T. Consumer design priorities for upper limb prosthetics. Disability and Rehabilitation Assistive Technology. 2007;2: 346–357. doi: 10.1080/17483100701714733 19263565

6. Biddiss EA, Chau TT. Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthetics and Orthotics International. 2007;31: 236–257. doi: 10.1080/03093640600994581 17979010

7. Shaperman J, LeBlanc M. Prehensor grip for children: A survey of the literature. Journal of Prosthetics and Orthotics. 1995;7: 61–64.

8. van der Niet O, Reinders-Messelink HA, Bongers RM, Bouwsema H, Van Der Sluis CK. The i-LIMB hand and the DMC plus hand compared: A case report. Prosthetics and Orthotics International. 2010;34: 216–20. doi: 10.3109/03093641003767207 20470060

9. Keller AD, Taylor GL, Zahm V. Studies to determine the functional requirements for hand and arm prostheses. The final report covering work during the year 1946-1947. 1947.

10. Hichert M, Vardy AN, Plettenburg DH. Fatigue-free operation of most body-powered prostheses not feasible for majority of users with trans-radial deficiency. Prosthetics and Orthotics International. 2017;42: 84–92. doi: 10.1177/0309364617708651 28621577

11. Hichert M, Abbink DA, Kyberd P, Plettenburg DH. High cable forces deteriorate pinch force control in voluntary- closing body-powered prostheses. PLoS ONE. 2017;12: e0169996. doi: 10.1371/journal.pone.0169996 28099454

12. TRS Prosthetics Inc.: TRS SURE-LOK [Internet]. [cited 24 Sep 2019]. Available:

13. Plettenburg DH, Hichert M, Smit G. Feedback in voluntary closing arm prostheses. Proceedings of the Myo Electric Control Symposium - MEC ’11 Raising the Standard, 2011 Aug 14-19. Fredericton, Canada: University of New Brunswick; 2011. pp. 74–78.

14. Schmidt R a, Zelaznik H, Hawkins B, Frank JS, Quinn JT. Motor-output variability: a theory for the accuracy of rapid motor acts. Psychological review. 1979;47: 415–451. doi: 10.1037/0033-295X.86.5.415 504536

15. Todorov E. Cosine tuning minimizes motor errors. Neural computation. 2002;14: 1233–1260. doi: 10.1162/089976602753712918 12020444

16. Mugge W, Schuurmans J, Schouten AC, van der Helm FCT. Sensory weighting of force and position feedback in human motor control tasks. Journal of Neuroscience. 2009;29: 5476–5482. doi: 10.1523/JNEUROSCI.0116-09.2009 19403815

17. Walsh LD, Taylor JL, Gandevia SC. Overestimation of force during matching of externally generated forces. The Journal of Physiology. 2011;589: 547–557. doi: 10.1113/jphysiol.2010.198689 21098006

18. Shergill SS, Bays PM, Frith CD, Wolpert DM. Two eyes for an eye: the neuroscience of force escalation. Science. 2003;301: 187. doi: 10.1126/science.1085327 12855800

19. Onneweer B, Mugge W, Schouten AC. Force preproduction error depends on force level, whereas the position reproduction error does not. IEEE Transactions on Haptics. 2016;9: 54–61. doi: 10.1109/TOH.2015.2508799 28055905

20. Jones LA, Hunter IW. Force sensation in isometric contractions: a relative force effect. Brain Research. 1982;244: 186–189. doi: 10.1016/0006-8993(82)90919-2 7116167

21. Monod H. Contractility of muscle during prolonged static and repetitive dynamic activity. Ergonomics. 1985;28: 81–9. doi: 10.1080/00140138508963115 3996380

22. Taylor CL. The biomechanics of the normal and of the amputated upper extremity. In: Klopsteg P, Wilson P, editors. Human limbs and their substitutes. New York, NY: McGraw-Hill; 1954. pp. 169–221.

23. Hichert M, Plettenburg DH, Vardy AN. A need for a more used-centred design in body powered prostheses. Proceedings of the Myo Electric Control Symposium - MEC ‘14 Redefining the Norm, 2014 Aug 18-22. Fredericton, Canada: University of New Brunswick; 2014; 91–95.

24. Latour D, Sabolevski T, Lajoie-Weaver K. Ipsilateral scapular cutaneous anchor. Proceedings of the 12th World Congress of the International Society for Prosthetics and Orthotics, 2007 July 9 –Aug 3. Vancouver, Canada: International Society of Prosthetics and Orthotics; 2007. p. 555.

25. Radocy B. TRS - Cutaneous Anchor with Debbie Latour [Internet]. 2015 [cited 25 Sep 2019]. Available:

26. Biddiss E, Chau T. Upper-limb prosthetics: critical factors in device abandonment. American Journal of Physical Medicine & Rehabilitation. 2007;86: 977–87. doi: 10.1097/PHM.0b013e3181587f6c 18090439

Článek vyšel v časopise


2019 Číslo 11