Nonsteroidal anti-inflammatory drugs and acetaminophen ameliorate muscular mechanical hyperalgesia developed after lengthening contractions via cyclooxygenase-2 independent mechanisms in rats

Autoři: Tetsuhiro Shimodaira aff001;  Shigeo Mikoshiba aff001;  Toru Taguchi aff002
Působiště autorů: Pharmaceutical Research Laboratories, Lion Corporation, Odawara, Japan aff001;  Department of Physical Therapy, Niigata University of Health and Welfare, Kita-ku, Niigata, Japan aff002;  Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Kita-ku, Niigata, Japan aff003
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224809


Nonsteroidal anti-inflammatory drugs and acetaminophen are cyclooxygenase inhibitors commonly used as symptomatic medicines for myofascial pain syndrome. Using the selective inhibitors celecoxib and zaltoprofen, cyclooxygenase-2 has been shown to be involved in the initiation, but not the maintenance, of muscular mechanical hyperalgesia induced by lengthening contractions, which serves as a useful model for the study of myofascial pain syndrome. The effect of other cyclooxygenase-2 inhibitors, such as acetylsalicylic acid, ibuprofen, loxoprofen sodium, and acetaminophen, on muscular mechanical hyperalgesia during maintenance has not been studied. Here, we examined the analgesic effects of the nonsteroidal anti-inflammatory drugs and acetaminophen on the model. Consistent with previous studies, mechanical withdrawal threshold of the muscle was significantly decreased and reached its lowest level 24 h after lengthening contractions. Celecoxib had no effect on muscular mechanical hyperalgesia, when orally administered 24 h after lengthening contractions. In contrast, acetylsalicylic acid, ibuprofen, loxoprofen sodium, and acetaminophen increased the withdrawal threshold, which had decreased by lengthening contractions, in a dose-dependent manner. These results demonstrate the analgesic actions of nonsteroidal anti-inflammatory drugs and acetaminophen in the maintenance process of lengthening contraction-induced muscular mechanical hyperalgesia, which may occur through cyclooxygenase-2 independent mechanisms.

Klíčová slova:

Analgesics – COX-2 inhibitors – Drug administration – Muscle contraction – Myalgia – NSAIDs – Oral administration – Hyperalgesia


1. Gerwin RD. Classification, epidemiology, and natural history of myofascial pain syndrome. Curr Pain Headache Rep. 2001; 412–420. 11560806

2. Simons DG, Travell JG, Simons LS. Myofascial Pain and Dysfunction: The Trigger Point Manual. Volume 1. Upper half of body. 2nd ed. Baltimore: Williams and Wilkins; 1998.

3. Mense S, Simons DG, Hoheisel U, Quenzer B. Lesions of rat skeletal muscle after local block of acetylcholinesterase and neuromuscular stimulation. J Appl Physiol. 2015;94: 2494–2501.

4. Gerwin RD, Dommerholt J, Shah JP. An expansion of Simons’ integrated hypothesis of trigger point formation. Curr Pain Headache Rep. 2004;8: 468–75. 15509461

5. Bron C, Dommerholt JD. Etiology of myofascial trigger points. Curr Pain Headache Rep. 2012;16: 439–444. doi: 10.1007/s11916-012-0289-4 22836591

6. Itoh K, Kawakita K. Effect of indomethacin on the development of eccentric exercise-induced localized sensitive region in the fascia of the rabbit. Jpn J Physiol. 2002;52: 173–80. doi: 10.2170/jjphysiol.52.173 12139775

7. Mizumura K, Murase S, Taguchi T. Animal Models of Myofascial Trigger Points. J Musculoskelet Pain. 2010;18: 361–366.

8. Taguchi T, Matsuda T, Tamura R, Sato J, Mizumura K. Muscular mechanical hyperalgesia revealed by behavioural pain test and c-Fos expression in the spinal dorsal horn after eccentric contraction in rats. J Physiol. 2005;564: 259–268. doi: 10.1113/jphysiol.2004.079483 15677691

9. Itoh K, Okada K, Kawakita K. A Proposed Experimental Model of Myofascial Trigger Points in Human Muscle after Slow Eccentric Exercise. Acupunct Med. 2004;22: 2–13. doi: 10.1136/aim.22.1.2 15077932

10. Hayashi K, Katanosaka K, Abe M, Yamanaka A, Nosaka K, Mizumura K, et al. Muscular mechanical hyperalgesia after lengthening contractions in rats depends on stretch velocity and range of motion. Eur J Pain. 2017;21: 125–139. doi: 10.1002/ejp.909 27351999

11. Shah JP, Danoff J V., Desai MJ, Parikh S, Nakamura LY, Phillips TM, et al. Biochemicals Associated With Pain and Inflammation are Elevated in Sites Near to and Remote From Active Myofascial Trigger Points. Arch Phys Med Rehabil. 2008;89: 16–23. doi: 10.1016/j.apmr.2007.10.018 18164325

12. Mizumura K, Taguchi T. Delayed onset muscle soreness: Involvement of neurotrophic factors. J Physiol Sci. 2016;66: 43–52. doi: 10.1007/s12576-015-0397-0 26467448

13. Murase S, Terazawa E, Queme F, Ota H, Matsuda T, Hirate K, et al. Bradykinin and nerve growth factor play pivotal roles in muscular mechanical hyperalgesia after exercise (delayed-onset muscle soreness). J Neurosci. 2010;

14. Murase S, Terazawa E, Hirate K, Yamanaka H, Kanda H, Noguchi K, et al. Upregulated glial cell line-derived neurotrophic factor through cyclooxygenase-2 activation in the muscle is required for mechanical hyperalgesia after exercise in rats. J Physiol. 2013;591: 3035–3048. doi: 10.1113/jphysiol.2012.249235 23587883

15. Hayashi K, Shiozawa S, Ozaki N, Mizumura K, Graven-Nielsen T. Repeated intramuscular injections of nerve growth factor induced progressive muscle hyperalgesia, facilitated temporal summation, and expanded pain areas. Pain. 2013;154: 2344–2352. doi: 10.1016/j.pain.2013.07.007 23867729

16. Fleckenstein J, Zaps D, Rüger LJ, Lehmeyer L, Freiberg F, Lang PM, et al. Discrepancy between prevalence and perceived effectiveness of treatment methods in myofascial pain syndrome: Results of a cross-sectional, nationwide survey. BMC Musculoskelet Disord. 2010;11.

17. Desai MJ, Saini V, Saini S. Myofascial Pain Syndrome: A Treatment Review. Pain Ther. 2013;2: 21–36. doi: 10.1007/s40122-013-0006-y 25135034

18. Roelofs PD, Deyo RA, Koes BW, Scholten RJ, van Tulder MW. Non‐steroidal anti‐inflammatory drugs for low back pain. Cochrane Database Syst Rev. 2008; CD000396. doi: 10.1002/14651858.CD000396.pub3 18253976

19. Moore RA, Derry S, McQuay HJ, Wiffen PJ. Single dose oral analgesics for acute postoperative pain in adults. Cochrane Database Syst Rev. 2011;

20. Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971;231: 232–5. doi: 10.1038/newbio231232a0 5284360

21. Cashman JN. The mechanisms of action of NSAIDs in analgesia. Drugs. 1996;52 Suppl 5: 13–23.

22. Warner TD, Giuliano F, Vojnovic I, Bukasa A, Mitchell JA, Vane JR. Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: A full in vitro analysis. Proc Natl Acad Sci. 2002;96: 7563–7568.

23. Amin AR, Vyas P, Attur M, Leszczynska-Piziak J, Patel IR, Weissmann G, et al. The mode of action of aspirin-like drugs: effect on inducible nitric oxide synthase. Proc Natl Acad Sci. 2006;92: 7926–7930.

24. Lehmann JM, Kliewer SA, Ringold GM, Oliver BB, Lenhard JM. Peroxisome Proliferator-activated Receptors α and γ Are Activated by Indomethacin and Other Non-steroidal Anti-inflammatory Drugs. J Biol Chem. 2002;272: 3406–3410.

25. Yin MJ, Yamamoto Y, Gaynor RB. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta [see comments]. Nature. 1998;396: 77–80. doi: 10.1038/23948 9817203

26. Voilley N, de Weille J, Mamet J, Lazdunski M. Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci. 2001;21: 8026–33. doi: 10.1523/JNEUROSCI.21-20-08026.2001 11588175

27. Maurer K, Binzen U, Mörz H, Bugert P, Schedel A, Treede RD, et al. Acetylsalicylic acid enhances tachyphylaxis of repetitive capsaicin responses in TRPV1-GFP expressing HEK293 cells. Neurosci Lett. Elsevier Ireland Ltd; 2014;563: 101–106.

28. Smith CE, Soti S, Jones TA, Nakagawa A, Xue D, Yin H. Non-steroidal Anti-inflammatory Drugs Are Caspase Inhibitors. Cell Chem Biol. 2017;24: 281–292.

29. Aronoff DM, Oates JA, Boutaud O. New insights into the mechanism of action of acetaminophen: Its clinical pharmacologic characteristics reflect its inhibition of the two prostaglandin H2 synthases. Clin Pharmacol Ther. 2006;79: 9–19. doi: 10.1016/j.clpt.2005.09.009 16413237

30. Anderson BJ. Paracetamol (Acetaminophen): Mechanisms of action. Paediatr Anaesth. 2008;18: 915–921. doi: 10.1111/j.1460-9592.2008.02764.x 18811827

31. Courade JP, Besse D, Delchambre C, Hanoun N, Hamon M, Eschalier A, et al. Acetaminophen distribution in the rat central nervous system. Life Sci. 2001;69: 1455–1464. doi: 10.1016/s0024-3205(01)01228-0 11531168

32. Crawley B, Saito O, Malkmus S, Fitzsimmons B, Hua XY, Yaksh TL. Acetaminophen prevents hyperalgesia in central pain cascade. Neurosci Lett. 2008;442: 50–53. doi: 10.1016/j.neulet.2008.06.062 18601979

33. Tjølsen A, Lund A, Hole K. Antinociceptive effect of paracetamol in rats is partly dependent on spinal serotonergic systems. Eur J Pharmacol. 1991;193: 193–201. doi: 10.1016/0014-2999(91)90036-p 1904822

34. Alloui A, Chassaing C, Schmidt J, Ardid D, Dubray C, Cloarec A, et al. Paracetamol exerts a spinal, tropisetron-reversible, antinociceptive effect in an inflammatory pain model in rats. Eur J Pharmacol. 2002;443: 71–77. doi: 10.1016/s0014-2999(02)01578-9 12044794

35. Bonnefont J, Alloui A, Chapuy E, Clottes E, Eschalier A. Orally Administered Paracetamol Does Not Act Locally in the Rat Formalin Test. Anesthesiology. 2003;99: 976–981. doi: 10.1097/00000542-200310000-00034 14508334

36. Sandrini M, Vitale G, Ruggieri V, Pini LA. Effect of acute and repeated administration of paracetamol on opioidergic and serotonergic systems in rats. Inflamm Res. 2007;56: 139–142. doi: 10.1007/s00011-006-6113-z 17522810

37. Rezende RM, França DS, Menezes GB, Dos Reis WGP, Bakhle YS, Francischi JN. Different mechanisms underlie the analgesic actions of paracetamol and dipyrone in a rat model of inflammatory pain. Br J Pharmacol. 2008;153: 760–768. doi: 10.1038/sj.bjp.0707630 18157167

38. Ohashi N, Uta D, Sasaki M, Ohashi M, Kamiya Y, Kohno T. Acetaminophen metabolite n-acylphenolamine induces analgesia via transient receptor potential vanilloid 1 receptors expressed on the primary afferent terminals of c-fibers in the spinal dorsal horn. Anesthesiology. 2017;127: 355–371. doi: 10.1097/ALN.0000000000001700 28542001

39. Adams SS, McCullough KF, Nicholson JS. The pharmacological properties of ibuprofen, an anti-inflammatory, analgesic and antipyretic agent. Arch Int Pharmacodyn Ther. 1969;178: 115–29. 5353466

40. Fu CJ, Melethil S, Mason WD. The pharmacokinetics of aspirin in rats and the effect of buffer. J Pharmacokinet Biopharm. 1991;19: 157–173. doi: 10.1007/bf01073867 2013838

41. Sawamura R, Kazui M, Kurihara A, Izumi T. Pharmacokinetics of loxoprofen and its active metabolite after dermal application of loxoprofen gel to rats. Pharmazie. 2015;70: 74–80. 25997245

42. Muramatsu S, Shiraishi S, Miyano K, Sudo Y, Toda A, Mogi M, et al. Metabolism of AM404 From Acetaminophen at Human Therapeutic Dosages in the Rat Brain. Anesthesiol Pain Med. 2015;6: 1–5.

43. Szallasi A, Cortright DN, Blum CA, Eid SR. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov. 2007;6: 357–372. doi: 10.1038/nrd2280 17464295

44. Fujii Y, Ozaki N, Taguchi T, Mizumura K, Furukawa K, Sugiura Y. TRP channels and ASICs mediate mechanical hyperalgesia in models of inflammatory muscle pain and delayed onset muscle soreness. Pain. 2008;140: 292–304. doi: 10.1016/j.pain.2008.08.013 18834667

45. Ota H, Katanosaka K, Murase S, Kashio M, Tominaga M, Mizumura K. TRPV1 and TRPV4 Play Pivotal Roles in Delayed Onset Muscle Soreness. PLoS One. 2013;8.

46. Schmelz M, Kress M. Topical acetylsalicylate attenuates capsaicin induced pain, flare and allodynia but not thermal hyperalgesia. Neurosci Lett. 1996;214: 72–4. doi: 10.1016/0304-3940(96)12868-8 8873135

47. Greffrath W, Kirschstein T, Nawrath H, Treede RD. Acetylsalicylic acid reduces heat responses in rat nociceptive primary sensory neurons—Evidence for a new mechanism of action. Neurosci Lett. 2002;320: 61–64. doi: 10.1016/s0304-3940(02)00033-2 11849764

48. Roth GJ, Stanford N, Majerus PW. Acetylation of prostaglandin synthase by aspirin. Proc Natl Acad Sci. 1975;72: 3073–3076. doi: 10.1073/pnas.72.8.3073 810797

49. Joshi SK, Hernandez G, Mikusa JP, Zhu CZ, Zhong C, Salyers A, et al. Comparison of antinociceptive actions of standard analgesics in attenuating capsaicin and nerve-injury-induced mechanical hypersensitivity. Neuroscience. 2006;143: 587–596. doi: 10.1016/j.neuroscience.2006.08.005 16962719

50. Zhu W, Oxford GS. Phosphoinositide-3-kinase and mitogen activated protein kinase signaling pathways mediate acute NGF sensitization of TRPV1. Mol Cell Neurosci. 2007;34: 689–700. doi: 10.1016/j.mcn.2007.01.005 17324588

51. Vellani V, Franchi S, Prandini M, Moretti S, Castelli M, Giacomoni C, et al. Effects of NSAIDs and paracetamol (acetaminophen) on protein kinase C epsilon translocation and on substance P synthesis and release in cultured sensory neurons. J Pain Res. 2013;6: 111–120. doi: 10.2147/JPR.S36916 23429763

52. Alessandri-Haber N. A Transient Receptor Potential Vanilloid 4-Dependent Mechanism of Hyperalgesia Is Engaged by Concerted Action of Inflammatory Mediators. J Neurosci. 2006;26: 3864–3874. doi: 10.1523/JNEUROSCI.5385-05.2006 16597741

53. Chen Y, Yang C, Wang ZJ. Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain. Neuroscience. 2011;193: 440–451. doi: 10.1016/j.neuroscience.2011.06.085 21763756

54. Costa R, Bicca MA, Manjavachi MN, Segat GC, Dias FC, Fernandes ES, et al. Kinin Receptors Sensitize TRPV4 Channel and Induce Mechanical Hyperalgesia: Relevance to Paclitaxel-Induced Peripheral Neuropathy in Mice. Mol Neurobiol. 2018;55: 2150–2161. doi: 10.1007/s12035-017-0475-9 28283888

55. Sluka KA, Price MP, Breese NM, Stucky CL, Wemmie JA, Welsh MJ. Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain. 2003;106: 229–39. doi: 10.1016/s0304-3959(03)00269-0 14659506

56. Sluka KA, Radhakrishnan R, Benson CJ, Eshcol JO, Price MP, Babinski K, et al. ASIC3 in muscle mediates mechanical, but not heat, hyperalgesia associated with muscle inflammation. Pain. 2007;129: 102–112. doi: 10.1016/j.pain.2006.09.038 17134831

57. Walder RY, Rasmussen LA, Rainier JD, Light AR, Wemmie JA, Sluka KA. ASIC1 and ASIC3 Play Different Roles in the Development of Hyperalgesia After Inflammatory Muscle Injury. J Pain. Elsevier Ltd; 2010;11: 210–218. doi: 10.1016/j.jpain.2009.07.004 20015700

58. Matsubara T, Hayashi K, Wakatsuki K, Abe M, Ozaki N, Yamanaka A, et al. Thin-fibre receptors expressing acid-sensing ion channel 3 contribute to muscular mechanical hypersensitivity after exercise. Eur J Pain. in press.

59. Tian Z, Pang H, Du S, Lu Y, Zhang L, Wu H, et al. Effect of Panax notoginseng saponins on the pharmacokinetics of aspirin in rats. J Chromatogr B Anal Technol Biomed Life Sci. 2017;1040: 136–143.

60. Lynagh T, Romero-Rojo JL, Lund C, Pless SA. Molecular Basis for Allosteric Inhibition of Acid-Sensing Ion Channel 1a by Ibuprofen. J Med Chem. 2017;60: 8192–8200. doi: 10.1021/acs.jmedchem.7b01072 28949138

61. Vanegas H, Tortorici V. Opioidergic effects of nonopioid analgesics on the central nervous system. Cell Mol Neurobiol. 2002;22: 655–661. doi: 10.1023/a:1021896622089 12585685

62. Ottani A, Leone S, Sandrini M, Ferrari A, Bertolini A. The analgesic activity of paracetamol is prevented by the blockade of cannabinoid CB1 receptors. Eur J Pharmacol. 2006;531: 280–281. doi: 10.1016/j.ejphar.2005.12.015 16438952

63. Mori T, Agata N, Itoh Y, Miyazu-Inoue M, Sokabe M, Taguchi T, et al. Stretch speed-dependent myofiber damage and functional deficits in rat skeletal muscle induced by lengthening contraction. Physiol Rep. 2014;2: 1–10.

64. Yoshino T, Kimoto A, Kobayashi S, Noguchi M, Fukunaga M, Hayashi A, et al. Pharmacological Profile of Celecoxib, a Specific Cyclooxygenase-2 Inhibitor. Arzneimittelforschung. 2011;55: 394–402.

65. Pecikoza UB, Tomić MA, Micov AM, Stepanović-Petrović RM. Metformin synergizes with conventional and adjuvant analgesic drugs to reduce inflammatory hyperalgesia in rats. Anesth Analg. 2017;124: 1317–1329. doi: 10.1213/ANE.0000000000001561 27669556

Článek vyšel v časopise


2019 Číslo 11