Comparative vector competence of the Afrotropical soft tick Ornithodoros moubata and Palearctic species, O. erraticus and O. verrucosus, for African swine fever virus strains circulating in Eurasia

Autoři: Rémi Pereira de Oliveira aff001;  Evelyne Hutet aff001;  Frédéric Paboeuf aff001;  Maxime Duhayon aff002;  Fernando Boinas aff004;  Adalberto Perez de Leon aff005;  Serhii Filatov aff006;  Laurence Vial aff002;  Marie-Frédérique Le Potier aff001
Působiště autorů: Swine Virology and Immunology Unit, Laboratoire de Ploufragan-Plouzané-Niort, Agence Nationale de Sécurité Sanitaire (ANSES), Ploufragan, France aff001;  UMR ASTRE Animal Santé, Territoires, Risques et Ecosystèmes, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, France aff002;  University of Montpellier, Montpellier, France aff003;  CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal aff004;  Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, USDA-ARS, Kerrville, Texas, United States of America aff005;  National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, NSC IECVM), Kharkiv, Ukraine aff006
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225657


African swine fever (ASF) is a lethal hemorrhagic disease in domestic pigs and wild suids caused by African swine fever virus (ASFV), which threatens the swine industry globally. In its native African enzootic foci, ASFV is naturally circulating between soft ticks of the genus Ornithodoros, especially in the O. moubata group, and wild reservoir suids, such as warthogs (Phacochoerus spp.) that are bitten by infected soft ticks inhabiting their burrows. While the ability of some Afrotropical soft ticks to transmit and maintain ASFV is well established, the vector status of Palearctic soft tick species for ASFV strains currently circulating in Eurasia remains largely unknown. For example, the Iberian soft tick O. erraticus is a known vector and reservoir of ASFV, but its ability to transmit different ASFV strains has not been assessed since ASF re-emerged in Europe in 2007. Little is known about vector competence for ASFV in other species, such as O. verrucosus, which occurs in southern parts of Eastern Europe, including Ukraine and parts of Russia, and in the Caucasus. Therefore, we conducted transmission trials with two Palearctic soft tick species, O. erraticus and O. verrucosus, and the Afrotropical species O. moubata. We tested the ability of ticks to transmit virulent ASFV strains, including one of direct African origin (Liv13/33), and three from Eurasia that had been involved in previous (OurT88/1), and the current epizooties (Georgia2007/1 and Ukr12/Zapo). Our experimental results showed that O. moubata was able to transmit the African and Eurasian ASFV strains, whereas O. erraticus and O. verrucosus failed to transmit the Eurasian ASFV strains. However, naïve pigs showed clinical signs of ASF when inoculated with homogenates of crushed O. erraticus and O. verrucosus ticks that fed on viraemic pigs, which proved the infectiousness of ASFV contained in the ticks. These results documented that O. erraticus and O. verrucosus are unlikely to be capable vectors of ASFV strains currently circulating in Eurasia. Additionally, the persistence of infection in soft ticks for several months reaffirms that the infectious status of a given tick species is only part of the data required to assess its vector competence for ASFV.

Klíčová slova:

Blood – Domestic animals – Euthanasia – Hyperthermia – Polymerase chain reaction – Swine – Ticks – Vector-borne diseases


1. Costard S, Wieland B, de Glanville W, Jori F, Rowlands R, Vosloo W, et al. African swine fever: how can global spread be prevented? Philos Trans R Soc Lond, B, Biol Sci. 2009;364: 2683–2696. doi: 10.1098/rstb.2009.0098 19687038

2. Boinas FS, Wilson AJ, Hutchings GH, Martins C, Dixon LJ. The Persistence of African Swine Fever Virus in Field-Infected Ornithodoros erraticus during the ASF Endemic Period in Portugal. Baylis M, editor. PLoS ONE. 2011;6: e20383. doi: 10.1371/journal.pone.0020383 21655242

3. Rowlands RJ, Michaud V, Heath L, Hutchings G, Oura C, Vosloo W, et al. African Swine Fever Virus Isolate, Georgia, 2007. Emerg Infect Dis. 2008;14: 1870–1874. doi: 10.3201/eid1412.080591 19046509

4. Chenais E, Depner K, Guberti V, Dietze K, Viltrop A, Ståhl K. Epidemiological considerations on African swine fever in Europe 2014–2018. Porc Health Manag. 2019;5: 6. doi: 10.1186/s40813-018-0109-2 30637117

5. Garigliany M, Desmecht D, Tignon M, Cassart D, Lesenfant C, Paternostre J, et al. Phylogeographic Analysis of African Swine Fever Virus, Western Europe, 2018. Emerg Infect Dis. 2019;25: 184–186. doi: 10.3201/eid2501.181535 30387416

6. ASF situation in Asia update. 10 october 2019 [cited 15 October 2019]. In: Emergency Prevention System for Animal Health (EMPRES-AH). Available from:

7. Rock DL. Challenges for African swine fever vaccine development-"… perhaps the end of the beginning.". Vet Microbiol. 2017;206: 52–58. doi: 10.1016/j.vetmic.2016.10.003 27756505

8. Dixon LK, Sun H, Roberts H. African swine fever. Antiviral Research. 2019;165: 34–41. doi: 10.1016/j.antiviral.2019.02.018 30836106

9. Arias M, Jurado C, Gallardo C, Fernández-Pinero J, Sánchez-Vizcaíno JM. Gaps in African swine fever: analysis and priorities. Transbound Emerg Dis. 2018;65: 235–247. doi: 10.1111/tbed.12695 28941208

10. Quembo CJ, Jori F, Vosloo W, Heath L. Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transbound Emerg Dis. 2018;65: 420–431. doi: 10.1111/tbed.12700 28921895

11. Guinat C, Gogin A, Blome S, Keil G, Pollin R, Pfeiffer DU, et al. Transmission routes of African swine fever virus to domestic pigs: current knowledge and future research directions. Veterinary Record. 2016;178: 262–267. doi: 10.1136/vr.103593 26966305

12. Boshoff CI. African swine fever virus maintenance and transmission dynamics in the sylvatic Ornithodoros vector. PhD Thesis. University of Pretoria. 2017.

13. Sánchez-Vizcaíno JM, Mur L, Bastos ADS, Penrith ML. New insights into the role of ticks in African swine fever epidemiology. Rev—Off Int Epizoot. 2015;34: 503–511. doi: 10.20506/rst.34.2.2375 26601452

14. Netherton CL, Connell S, Benfield CTO, Dixon LK. The Genetics of Life and Death: Virus-Host Interactions Underpinning Resistance to African Swine Fever, a Viral Hemorrhagic Disease. Front Genet. 2019;10: 402. doi: 10.3389/fgene.2019.00402 31130984

15. Plowright W, Perry CT, Peirce MA, Parker J. Experimental infection of the argasid tick, Ornithodoros moubata porcinus, with African swine fever virus. Arch Gesamte Virusforsch. 1970;31: 33–50. doi: 10.1007/bf01241664 5475061

16. Thomson GR. The epidemiology of African swine fever: the role of free-living hosts in Africa. Onderstepoort J Vet Res. 1985;52: 201–209. 3911134

17. Hess WR, Endris RG, Lousa A, Caiado JM. Clearance of African swine fever virus from infected tick (Acari) colonies. J Med Entomol. 1989;26: 314–317. doi: 10.1093/jmedent/26.4.314 2769711

18. Rennie LF. The persistance of African Swine Fever Virus in the argasid tick Ornithodoros moubata. PhD Thesis. Université of Hertfordshire. 1998.

19. Rennie L, Wilkinson PJ, Mellor PS. Transovarial transmission of African swine fever virus in the argasid tick Ornithodoros moubata. Medical and Veterinary Entomology. 2001;15: 140–146. doi: 10.1046/j.1365-2915.2001.00282.x 11434547

20. Kleiboeker SB, Scoles GA, Burrage TG, Sur J. African swine fever virus replication in the midgut epithelium is required for infection of Ornithodoros ticks. J Virol. 1999;73: 8587–8598. 10482612

21. de Carvalho Ferreira HC, Tudela Zúquete S, Wijnveld M, Weesendorp E, Jongejan F, Stegeman A, et al. No evidence of African swine fever virus replication in hard ticks. Ticks and Tick-borne Diseases. 2014;5: 582–589. doi: 10.1016/j.ttbdis.2013.12.012 24980962

22. Caiado JM, Boinas FS, Louza AC. Epidemiological research of African swine fever (ASF) in Portugal: the role of vectors and virus reservoirs. Acta Vet Scand Suppl. 1988;84: 136–138. 3232597

23. Pérez-Sánchez R, Astigarraga A, Oleaga-Pérez A, Encinas-Grandes A. Relationship between the persistence of African swine fever and the distribution of Ornithodoros erraticus in the province of Salamanca, Spain. Vet Rec. 1994;135: 207–209. doi: 10.1136/vr.135.9.207 7998382

24. Endris RG, Hess WR. Experimental transmission of African swine fever virus by the soft tick Ornithodoros (Pavlovskyella) marocanus (Acari: Ixodoidea: Argasidae). J Med Entomol. 1992;29: 652–656. doi: 10.1093/jmedent/29.4.652 1495075

25. Ribeiro R, Otte J, Madeira S, Hutchings GH, Boinas F. Experimental Infection of Ornithodoros erraticus sensu stricto with Two Portuguese African Swine Fever Virus Strains. Study of Factors Involved in the Dynamics of Infection in Ticks. Bergström S, editor. PLoS ONE. 2015;10: e0137718. doi: 10.1371/journal.pone.0137718 26366570

26. Basto AP. Kinetics of African swine fever virus infection in Ornithodoros erraticus ticks. Journal of General Virology. 2006;87: 1863–1871. doi: 10.1099/vir.0.81765-0 16760388

27. Rowlands RJ, Duarte MM, Boinas F, Hutchings G, Dixon LK. The CD2v protein enhances African swine fever virus replication in the tick vector, Ornithodoros erraticus. Virology. 2009;393: 319–328. doi: 10.1016/j.virol.2009.07.040 19729182

28. Diaz AV, Netherton CL, Dixon LK, Wilson AJ. African Swine Fever Virus Strain Georgia 2007/1 in Ornithodoros erraticus Ticks. Emerg Infect Dis. 2012;18: 1026–1028. doi: 10.3201/eid1806.111728 22607706

29. Olesen AS, Lohse L, Boklund A, Halasa T, Belsham GJ, Rasmussen TB, et al. Short time window for transmissibility of African swine fever virus from a contaminated environment. Transbound Emerg Dis. 2018;65: 1024–1032. doi: 10.1111/tbed.12837 29457702

30. Olesen AS, Lohse L, Hansen MF, Boklund A, Halasa T, Belsham GJ, et al. Infection of pigs with African swine fever virus via ingestion of stable flies (Stomoxys calcitrans). Transbound Emerg Dis. 2018;65: 1152–1157. doi: 10.1111/tbed.12918 29877056

31. Vial L, Ducheyne E, Filatov S, Gerilovych A, McVey DS, Sindryakova I, et al. Spatial multi-criteria decision analysis for modelling suitable habitats of Ornithodoros soft ticks in the Western Palearctic region. Veterinary Parasitology. 2018;249: 2–16. doi: 10.1016/j.vetpar.2017.10.022 29279082

32. Mur L, Iscaro C, Cocco M, Jurado C, Rolesu S, De Mia GM, et al. Serological Surveillance and Direct Field Searching Reaffirm the Absence of Ornithodoros erraticus Ticks Role in African Swine Fever Cycle in Sardinia. Transbound Emerg Dis. 2017;64: 1322–1328. doi: 10.1111/tbed.12485 26952266

33. Filatov S, Krishnavajhala A, Armstrong BA, Nieto NC, Pérez de León AA, Lopez JE. Isolation and molecular characterization of tick-borne relapsing fever Borrelia infecting Ornithodoros (Pavlovskyella) verrucosus ticks collected in Ukraine. J Infect Dis. 2019. pii: jiz500. doi: 10.1093/infdis/jiz500 31573602

34. Kleiboeker SB, Scoles GA. Pathogenesis of African swine fever virus in Ornithodoros ticks. Anim Health Res Rev. 2001;2: 121–128. 11831434

35. Burrage TG. African swine fever virus infection in Ornithodoros ticks. Virus Res. 2013;173: 131–139. doi: 10.1016/j.virusres.2012.10.010 23085123

36. Nurmoja I, Schulz K, Staubach C, Sauter-Louis C, Depner K, Conraths FJ, et al. Development of African swine fever epidemic among wild boar in Estonia—two different areas in the epidemiological focus. Sci Rep. 2017;7: 12562. doi: 10.1038/s41598-017-12952-w 28970577

37. Zani L, Forth JH, Forth L, Nurmoja I, Leidenberger S, Henke J, et al. Deletion at the 5’-end of Estonian ASFV strains associated with an attenuated phenotype. Sci Rep. 2018;8: 6510. doi: 10.1038/s41598-018-24740-1 29695831

38. Gallardo C, Soler A, Rodze I, Nieto R, Cano-Gómez C, Fernandez-Pinero J, et al. Attenuated and non-haemadsorbing (non-HAD) genotype II African swine fever virus (ASFV) isolated in Europe, Latvia 2017. Transbound Emerg Dis. 2019;66: 1399–1404. doi: 10.1111/tbed.13132 30667598

39. Bao J, Wang Q, Lin P, Liu C, Li L, Wu X, et al. Genome comparison of African swine fever virus China/2018/AnhuiXCGQ strain and related European p72 Genotype II strains. Transbound Emerg Dis. 2019;66: 1167–1176. doi: 10.1111/tbed.13124 30637968

40. Gallardo C, Fernández-Pinero J, Pelayo V, Gazaev I, Markowska-Daniel I, Pridotkas G, et al. Genetic variation among African swine fever genotype II viruses, eastern and central Europe. Emerging Infect Dis. 2014;20: 1544–1547. doi: 10.3201/eid2009.140554 25148518

41. Dixon LK, Wilkinson PJ. Genetic Diversity of African Swine Fever Virus Isolates from Soft Ticks (Ornithodoros moubata) Inhabiting Warthog Burrows in Zambia. Journal of General Virology. 1988;69: 2981–2993. doi: 10.1099/0022-1317-69-12-2981 3199101

42. Boinas FJS. The role of Ornithodoros erraticus in the epidemiology of African Swine Fever in Portugal. PhD Thesis. University of Reading. 1994.

43. King K, Chapman D, Argilaguet JM, Fishbourne E, Hutet E, Cariolet R, et al. Protection of European domestic pigs from virulent African isolates of African swine fever virus by experimental immunisation. Vaccine. 2011;29: 4593–4600. doi: 10.1016/j.vaccine.2011.04.052 21549789

44. Carrascosa AL, Bustos MJ, de Leon P. Methods for growing and titrating African swine fever virus: field and laboratory samples. Curr Protoc Cell Biol. 2011;Chapter 26: Unit 26.14. doi: 10.1002/0471143030.cb2614s53 22161547

45. Vial L. Biological and ecological characteristics of soft ticks (Ixodida: Argasidae) and their impact for predicting tick and associated disease distribution. Parasite. 2009;16: 191–202. doi: 10.1051/parasite/2009163191 19839264

46. Bernard J, Hutet E, Paboeuf F, Randriamparany T, Holzmuller P, Lancelot R, et al. Effect of O. porcinus Tick Salivary Gland Extract on the African Swine Fever Virus Infection in Domestic Pig. Oliveira PL, editor. PLoS ONE. 2016;11: e0147869. doi: 10.1371/journal.pone.0147869 26828597

47. Tignon M, Gallardo C, Iscaro C, Hutet E, Van der Stede Y, Kolbasov D, et al. Development and inter-laboratory validation study of an improved new real-time PCR assay with internal control for detection and laboratory diagnosis of African swine fever virus. Journal of Virological Methods. 2011;178: 161–170. doi: 10.1016/j.jviromet.2011.09.007 21946285

48. Duron O, Morel O, Noël V, Buysse M, Binetruy F, Lancelot R, et al. Tick-Bacteria Mutualism Depends on B Vitamin Synthesis Pathways. Curr Biol. 2018;28: 1896–1902.e5. doi: 10.1016/j.cub.2018.04.038 29861133

49. Wilson AJ, Harrup LE. Reproducibility and relevance in insect-arbovirus infection studies. Curr Opin Insect Sci. 2018;28: 105–112. doi: 10.1016/j.cois.2018.05.007 30551760

50. Bonnet S, Liu XY. Laboratory artificial infection of hard ticks: a tool for the analysis of tick-borne pathogen transmission. Acarologia. 2012;52: 453–464. doi: 10.1051/acarologia/20122068

51. Bernard J. Ornithodoros tick vector competence characteriation for African swine fever virus and study of two vector competence determinants: virus strain—vector relationship and tick saliva influence on domestic pig infection. University of Montpellier. 2015.

52. Netherton CL, Connell S, Benfield CTO, Dixon LK. The Genetics of Life and Death: Virus-Host Interactions Underpinning Resistance to African Swine Fever, a Viral Hemorrhagic Disease. Front Genet. 2019;10: 402. doi: 10.3389/fgene.2019.00402 31130984

53. Filatov S. Peculiarities of African swine fever spread in Ukraine and risks for the biological transmission of the virus. National Scientific Center—Institute of Experimental and Clinical Veterinary Medicine, Kharkiv, Ukraine. 2019.

54. Kleiboeker SB, Burrage TG, Scoles GA, Fish D, Rock DL. African swine fever virus infection in the argasid host, Ornithodoros porcinus porcinus. J Virol. 1998;72: 1711–1724. 9499019

55. Lavoipierre MMJ, Riek RF. Observations on the Feeding Habits of Argasid Ticks and on the Effect of their Bites on Laboratory Animals, Together with a Note on the Production of Coxal Fluid by Several of the Species Studied. Annals of Tropical Medicine & Parasitology. 1955;49: 96–113. doi: 10.1080/00034983.1955.11685655 14362423

56. Whitman L, Aitken THG. Potentiality of Ornithodoros moubata Murray (Acarina, Argasidae) as a Reservoir-Vector of West Nile Virus. Annals of Tropical Medicine & Parasitology. 1960;54(2):192–204. doi: 10.1080/00034983.1960.11685975 13844469

57. Miller BR, Loomis R, Dejean A, Hoogstraal H. Experimental Studies on the Replication and Dissemination of Qalyub Virus (Bunyaviridae: Nairovirus) in the Putative Tick Vector, Ornithodoros (Pavlovskyella) erraticus. The American Journal of Tropical Medicine and Hygiene. 1985;34(1):180–7. doi: 10.4269/ajtmh.1985.34.180 3918473

58. Bakkes DK, De Klerk D, Latif AA, Mans BJ. Integrative taxonomy of Afrotropical Ornithodoros (Ornithodoros) (Acari: Ixodida: Argasidae). Ticks and Tick-borne Diseases. 2018;9: 1006–1037. doi: 10.1016/j.ttbdis.2018.03.024 29625921

59. Trape J-F, Diatta G, Arnathau C, Bitam I, Sarih Mh, Belghyti D, et al. The Epidemiology and Geographic Distribution of Relapsing Fever Borreliosis in West and North Africa, with a Review of the Ornithodoros erraticus Complex (Acari: Ixodida). PLOS ONE. 2013;8(11):e78473. doi: 10.1371/journal.pone.0078473 24223812

60. Mans BJ, Featherston J, Kvas M, Pillay K-A, de Klerk DG, Pienaar R, et al. Argasid and ixodid systematics: Implications for soft tick evolution and systematics, with a new argasid species list. Ticks and Tick-borne Diseases. 2019;10: 219–240. doi: 10.1016/j.ttbdis.2018.09.010 30309738

61. de la Fuente J, Antunes S, Bonnet S, Cabezas-Cruz A, Domingos AG, Estrada-Peña A, et al. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases. Front Cell Infect Microbiol. 2017;7: 114. doi: 10.3389/fcimb.2017.00114 28439499

62. Krishnavajhala A, Armstrong BA, Lopez JE. Vector Competence of Geographical Populations of Ornithodoros turicata for the Tick-Borne Relapsing Fever Spirochete Borrelia turicatae. Appl Environ Microbiol. 2018;84. doi: 10.1128/AEM.01505-18 30143510

63. Dixon LK, Chapman DAG, Netherton CL, Upton C. African swine fever virus replication and genomics. Virus Research. 2013;173: 3–14. doi: 10.1016/j.virusres.2012.10.020 23142553

64. Chen Z, Xu X, Wang Y, Bei J, Jin X, Dou W, et al. DNA segments of African Swine Fever Virus detected for the first time in hard ticks from sheep and bovines. saa. 2019;24: 180. doi: 10.11158/saa.24.1.13

65. Merritt RW, Walker ED, Small PLC, Wallace JR, Johnson PDR, Benbow ME, et al. Ecology and transmission of Buruli ulcer disease: a systematic review. PLoS Negl Trop Dis. 2010;4: e911. doi: 10.1371/journal.pntd.0000911 21179505

66. Wilson AJ, Morgan ER, Booth M, Norman R, Perkins SE, Hauffe HC, Mideo N, Antonovics J, McCallum H, Fenton A. What is a vector? Philos Trans R Soc Lond B Biol Sci. 2017 May 5;372(1719).

Článek vyšel v časopise


2019 Číslo 11