Does craniofacial morphology affect third molars impaction? Results from a population-based study in northeastern Germany


Autoři: Stefan Kindler aff001;  Till Ittermann aff002;  Robin Bülow aff003;  Birte Holtfreter aff004;  Catharina Klausenitz aff003;  Philine Metelmann aff005;  Maria Mksoud aff001;  Christiane Pink aff004;  Christian Seebauer aff001;  Thomas Kocher aff004;  Thomas Koppe aff006;  Karl-Friedrich Krey aff005;  Hans-Robert Metelmann aff001;  Henry Völzke aff002;  Amro Daboul aff007
Působiště autorů: Department of Oral and Maxillofacial Surgery/Plastic Surgery, University Medicine Greifswald, Greifswald, Germany aff001;  Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany aff002;  Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany aff003;  Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany aff004;  Department of Orthodontics, University Medicine Greifswald, Greifswald, Germany aff005;  Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany aff006;  Department of Prosthodontics, Gerodontology and Biomaterials, University Medicine Greifswald, Greifswald, Germany aff007
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225444

Souhrn

Objectives

It is still not clear why impaction of third molars occurs. Craniofacial morphology and facial parameters have been discussed to be strong predictors for third molar impaction. Thus, this study aimed to investigate the effect of craniofacial morphology on erupted or impacted third molars in a German population sample.

Materials and methods

Erupted and impacted third molars in 2,484 participants from the Study of Health in Pomerania were assessed by whole-body magnetic resonance imaging. Markers of facial morphology were determined in 619 individuals of those participants in whose 421 participants (16.7%) had at least one impacted third molar. Craniofacial morphology was estimated as linear measurements and was associated in a cross-sectional study design with impacted and erupted third molars by multinomial logistic regression models. Erupted third molars were used as reference outcome category and regression models were adjusted for age and sex.

Results

Maximum Cranial Width (Eurion-Eurion distance) was significantly associated with impacted third molars (RR: 1.079; 95% confidence interval 1.028–1.132). This association was even more pronounced in the mandible. Individuals with a lower total anterior facial height (Nasion-Menton distance) and a lower facial index also have an increased risk for impacted third molars in the mandible (RR 0.953; 95% confidence interval 0.913–0.996 and RR: 0.943; 95% confidence interval 0.894–0.995). No significant associations of third molar status with facial width (Zygion-Zygion distance), and sagittal cranial dimension (Nasion-Sella distance; Sella-Basion distance) were observed.

Conclusion

Individuals with an increased maximal cranial width have a higher risk for impaction of third molars in the mandible and in the maxilla. Individuals with a lower anterior total anterior facial height and lower facial index also have an increased risk for third molars impaction in the mandible. These findings could help orthodontic dentists, oral surgeons and oral and maxillofacial surgeons in decision-making for third molars removal in their treatment. These findings highlight the necessity of an additional analysis of the maximal cranial width by the Eurion- Eurion distance.

Klíčová slova:

Decision making – Face – Magnetic resonance imaging – Mandible – Maxilla – Molars – Orthodontics – Tooth eruption


Zdroje

1. Adeyemo WL. Do pathologies associated with impacted lower third molars justify prophylactic removal? A critical review of the literature. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics. 2006;102(4):448–52. Epub 2006/09/26. doi: 10.1016/j.tripleo.2005.08.015 16997110.

2. Baykul T, Saglam AA, Aydin U, Basak K. Incidence of cystic changes in radiographically normal impacted lower third molar follicles. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics. 2005;99:542–5. doi: 10.1016/j.tripleo.2004.08.010 15829874.

3. Carter K, Worthington S. Predictors of Third Molar Impaction: A Systematic Review and Meta-analysis. J Dent Res. 2016;95(3):267–76. Epub 2015/11/13. doi: 10.1177/0022034515615857 26561441.

4. Monson TA, Coleman JL, Hlusko LJ. Craniodental allometry, prenatal growth rates, and the evolutionary loss of the third molars in New World monkeys. Anatomical record (Hoboken, NJ: 2007). 2018. Epub 2018/10/14. doi: 10.1002/ar.23979 30315641.

5. Mucci RJ. The Role of Attrition in the Etiology of Third Molar Impactions: Confirming the Begg Hypothesis: University of Illinois at Chicago Circle; 1982.

6. Inoue N. Tooth to denture base discrepancy in human evolution. Journal of the Anthropological Society of Nippon. 1980;88(2):69–82. doi: 10.1537/ase1911.88.69

7. Kanazawa E, Rosenberger AL. Reduction index of the upper M2 in marmosets. Primates. 1988;29(4):525–33. doi: 10.1007/bf02381139

8. Monson TA, Hlusko LJ. Breaking the rules: Phylogeny, not life history, explains dental eruption sequence in primates. Am J Phys Anthropol. 2018;167(2):217–33. Epub 2018/09/15. doi: 10.1002/ajpa.23618 30216408.

9. Wood B. Origin and evolution of the genus Homo. Nature. 1992;355(6363):783–90. Epub 1992/02/27. doi: 10.1038/355783a0 1538759.

10. Breik O, Grubor D. The incidence of mandibular third molar impactions in different skeletal face types. Aust Dent J. 2008;53(4):320–4. Epub 2009/01/13. doi: 10.1111/j.1834-7819.2008.00073.x 19133947.

11. Chu F, Li T, Lui V, Newsome P, Chow R, Cheung L. Prevalence of impacted teeth and associated pathologies—a radiographic study of the Hong Kong Chinese population. Hong Kong Medical Journal. 2003;9(3):158–63. 12777649

12. Quek S, Tay C, Tay K, Toh S, Lim K. Pattern of third molar impaction in a Singapore Chinese population: a retrospective radiographic survey. Int J Oral Maxillofac Surg. 2003;32:548–52. 14759117

13. Hashemipour M, Tahmasbi-Arashlow M, Fahimi-Hanzaei F. Incidence of impacted mandibular and maxillary third molars: a radiographic study in a Southeast Iran population. Medicina Oral, Patologia Oral y Cirugia Bucal. 2013;18(1):140–5.

14. Opdebeeck H, Bell WH. The short face syndrome. American journal of orthodontics. 1978;73(5):499–511. Epub 1978/05/01. doi: 10.1016/0002-9416(78)90240-3 277066.

15. Di Dio M, Muzzi F, Cecchetti F, Bartuli FN, Pujia A, Arcuri C. [Impacted third molars and facial typology]. Minerva Stomatol. 2002;51(11–12):473–7. Epub 2003/03/28. 12660614.

16. Bozzatello JR. [Relationship between craniofacial architecture and retained lower third molar. Its' symptomatology]. Revista de la Facultad de Ciencias Medicas (Cordoba, Argentina). 2006;63(2 Suppl):38–42. Epub 2007/07/25. 17645046.

17. Arnett GW, Gunson MJ. Facial planning for orthodontists and oral surgeons. American journal of orthodontics and dentofacial orthopedics: official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics. 2004;126(3):290–5. Epub 2004/09/10. doi: 10.1016/s0889540604005232 15356488.

18. Arnett GW, Bergman RT. Facial keys to orthodontic diagnosis and treatment planning. Part I. American journal of orthodontics and dentofacial orthopedics: official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics. 1993;103(4):299–312. Epub 1993/04/01. doi: 10.1016/0889-5406(93)70010-l 8480695.

19. Bergman RT. Cephalometric soft tissue facial analysis. American journal of orthodontics and dentofacial orthopedics: official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics. 1999;116(4):373–89. Epub 1999/10/08. doi: 10.1016/s0889-5406(99)70222-2 10511665.

20. Matteson SR, Bechtold W, Phillips C, Staab EV. A method for three-dimensional image reformation for quantitative cephalometric analysis. Journal of oral and maxillofacial surgery: official journal of the American Association of Oral and Maxillofacial Surgeons. 1989;47(10):1053–61. Epub 1989/10/01. doi: 10.1016/0278-2391(89)90180-8 2795298.

21. Niraj LK, Patthi B, Singla A, Gupta R, Ali I, Dhama K, et al. MRI in Dentistry- A Future Towards Radiation Free Imaging—Systematic Review. Journal of clinical and diagnostic research: JCDR. 2016;10(10):Ze14–ze9. Epub 2016/11/29. doi: 10.7860/JCDR/2016/19435.8658 27891491; PubMed Central PMCID: PMC5121829.

22. Mehanna H, Kong A, Ahmed SK. Recurrent head and neck cancer: United Kingdom National Multidisciplinary Guidelines. The Journal of laryngology and otology. 2016;130(S2):S181–s90. Epub 2016/11/15. doi: 10.1017/S002221511600061X 27841130; PubMed Central PMCID: PMC4873924.

23. Ferretti F, Malventi M, Malasoma R. Dental magnetic resonance imaging: study of impacted mandibular third molars. Dento maxillo facial radiology. 2009;38(6):387–92. Epub 2009/08/25. doi: 10.1259/dmfr/29929241 19700532.

24. Fokkens WJ, Lund VJ, Mullol J, Bachert C, Alobid I, Baroody F, et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2012. Rhinology Supplement. 2012;23:3 p preceding table of contents, 1–298. Epub 2012/07/07. 22764607.

25. Gray CF, Redpath TW, Smith FW. Magnetic resonance imaging: a useful tool for evaluation of bone prior to implant surgery. British dental journal. 1998;184(12):603–7. Epub 1998/07/31. doi: 10.1038/sj.bdj.4809707 9682562.

26. Daboul A, Schwahn C, Schaffner G, Soehnel S, Samietz S, Aljaghsi A, et al. Reproducibility of Frankfort horizontal plane on 3D multi-planar reconstructed MR images. PloS one. 2012;7(10):e48281. Epub 2012/11/03. doi: 10.1371/journal.pone.0048281 23118970; PubMed Central PMCID: PMC3485237.

27. Salti L, Holtfreter B, Pink C, Habes M, Biffar R, Kiliaridis S, et al. Estimating effects of craniofacial morphology on gingival recession and clinical attachment loss. J Clin Periodontol. 2017;44(4):363–71. Epub 2016/12/09. doi: 10.1111/jcpe.12661 27930822.

28. Cotton F, Rozzi FR, Vallee B, Pachai C, Hermier M, Guihard-Costa AM, et al. Cranial sutures and craniometric points detected on MRI. Surg Radiol Anat. 2005;27(1):64–70. Epub 2004/11/02. doi: 10.1007/s00276-004-0283-6 15517262.

29. Völzke H, Alte D, Schmidt CO, Radke D, Lorbeer R, Friedrich N, et al. Cohort Profile: The Study of Health in Pomerania. International Journal of Epidemiology. 2011;40(2):294–307. doi: 10.1093/ije/dyp394 20167617

30. Goto TK, Nishida S, Nakamura Y, Tokumori K, Nakamura Y, Kobayashi K, et al. The accuracy of 3-dimensional magnetic resonance 3D vibe images of the mandible: an in vitro comparison of magnetic resonance imaging and computed tomography. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics. 2007;103(4):550–9. Epub 2007/03/31. doi: 10.1016/j.tripleo.2006.03.011 17395071.

31. Juerchott A, Saleem MA, Hilgenfeld T, Freudlsperger C, Zingler S, Lux CJ, et al. 3D cephalometric analysis using Magnetic Resonance Imaging: validation of accuracy and reproducibility. Scientific Reports. 2018;8(1):13029. doi: 10.1038/s41598-018-31384-8 30158656

32. Heil A, Lazo Gonzalez E, Hilgenfeld T, Kickingereder P, Bendszus M, Heiland S, et al. Lateral cephalometric analysis for treatment planning in orthodontics based on MRI compared with radiographs: A feasibility study in children and adolescents. PloS one. 2017;12(3):e0174524. Epub 2017/03/24. doi: 10.1371/journal.pone.0174524 28334054; PubMed Central PMCID: PMC5363936.

33. Daboul A, Ivanovska T, Bulow R, Biffar R, Cardini A. Procrustes-based geometric morphometrics on MRI images: An example of inter-operator bias in 3D landmarks and its impact on big datasets. PloS one. 2018;13(5):e0197675. Epub 2018/05/23. doi: 10.1371/journal.pone.0197675 29787586; PubMed Central PMCID: PMC5963746.

34. Verweij JP, Mensink G, Fiocco M, van Merkesteyn JP. Presence of mandibular third molars during bilateral sagittal split osteotomy increases the possibility of bad split but not the risk of other post-operative complications. Journal of cranio-maxillo-facial surgery: official publication of the European Association for Cranio-Maxillo-Facial Surgery. 2014;42(7):e359–63. Epub 2014/05/03. doi: 10.1016/j.jcms.2014.03.019 24787081.

35. Ko EW, Lin SC, Chen YR, Huang CS. Skeletal and dental variables related to the stability of orthognathic surgery in skeletal Class III malocclusion with a surgery-first approach. Journal of oral and maxillofacial surgery: official journal of the American Association of Oral and Maxillofacial Surgeons. 2013;71(5):e215–23. Epub 2013/03/05. doi: 10.1016/j.joms.2012.12.025 23455415.

36. Cheng HC, Peng BY, Hsieh HY, Tam KW. Impact of third molars on mandibular relapse in post-orthodontic patients: A meta-analysis. Journal of dental sciences. 2018;13(1):1–7. Epub 2019/03/22. doi: 10.1016/j.jds.2017.10.005 30895087; PubMed Central PMCID: PMC6388845.

37. Rupp RP. Orthodontic relapse and the mandibular third molar: a literature review. General dentistry. 2000;48(3):344–6. Epub 2001/02/24. 11199603.

38. Moller M, Schaupp E, Massumi-Moller N, Zeyher C, Godt A, Berneburg M. Reference values for three-dimensional surface cephalometry in children aged 3–6 years. Orthodontics & craniofacial research. 2012;15(2):103–16. Epub 2012/04/21. doi: 10.1111/j.1601-6343.2012.01541.x 22515186.

39. Almaqrami BS, Alhammadi MS, Cao B. Three dimensional reliability analyses of currently used methods for assessment of sagittal jaw discrepancy. Journal of clinical and experimental dentistry. 2018;10(4):e352–e60. Epub 2018/05/12. doi: 10.4317/jced.54578 29750096; PubMed Central PMCID: PMC5937959.

40. Behbehani F, Artun J, Thalib L. Prediction of mandibular third-molar impaction in adolescent orthodontic patients. American journal of orthodontics and dentofacial orthopedics: official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics. 2006;130(1):47–55. Epub 2006/07/20. doi: 10.1016/j.ajodo.2006.03.002 16849071.

41. Voelzke H, Alte D, Schmidt C, Radke D, Lorbeer R, Friedrich N, et al. Cohort Profile: The Study of Health in Pomerania. International Journal of Epidemiology. 2010;40:294–307. doi: 10.1093/ije/dyp394 20167617

42. Keil U, Liese AD, Hense HW, Filipiak B, Doring A, Stieber J, et al. Classical risk factors and their impact on incident non-fatal and fatal myocardial infarction and all-cause mortality in southern Germany. Results from the MONICA Augsburg cohort study 1984–1992. Monitoring Trends and Determinants in Cardiovascular Diseases. European heart journal. 1998;19(8):1197–207. Epub 1998/09/18. doi: 10.1053/euhj.1998.1089 9740341.

43. Hegenscheid K, Kuehn J, Voelzke H, Biffar R, Hosten N, Puls R. Whole-Body Magnetic Resonance Imaging of Healthy Volunteers: Pilot Study Results from the Population-Based SHIP Study. Fortschr Roentgenstr. 2009;181:748–59.

44. Pell GJ, Gregory GT. Report on a ten-year study of a tooth division technique for the removal of impacted teeth. American Journal of Orthodontics and Oral Surgery. 1942;28(11):660–6.

45. Kindler S, Holtfreter B, Koppe T, Mksoud M, Lucas C, Seebauer C, et al. Third Molars And Periodontal Damage Of Second Molars In The General Population. J Clin Periodontol. 2018. Epub 2018/09/01. doi: 10.1111/jcpe.13008 30168629.

46. Farkas LG, Katic MJ, Forrest CR, Alt KW, Bagic I, Baltadjiev G, et al. International anthropometric study of facial morphology in various ethnic groups/races. The Journal of craniofacial surgery. 2005;16(4):615–46. Epub 2005/08/04. doi: 10.1097/01.scs.0000171847.58031.9e 16077306.

47. Langowska-Adamczyk H, Karmanska B. Similar locations of impacted and supernumerary teeth in monozygotic twins: a report of 2 cases. American journal of orthodontics and dentofacial orthopedics: official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics. 2001;119(1):67–70. Epub 2001/02/15. doi: 10.1067/mod.2001.111225 11174542.

48. Krecioch J. Examining the relationship between skull size and dental anomalies2014. 224–32 p.

49. Kuijpers MA, Chiu YT, Nada RM, Carels CE, Fudalej PS. Three-dimensional imaging methods for quantitative analysis of facial soft tissues and skeletal morphology in patients with orofacial clefts: a systematic review. PloS one. 2014;9(4):e93442. Epub 2014/04/09. doi: 10.1371/journal.pone.0093442 24710215; PubMed Central PMCID: PMC3977868.

50. Tyndall DA, Renner JB, Phillips C, Matteson SR. Positional changes of the mandibular condyle assessed by three-dimensional computed tomography. Journal of oral and maxillofacial surgery: official journal of the American Association of Oral and Maxillofacial Surgeons. 1992;50(11):1164–72. Epub 1992/11/01. doi: 10.1016/0278-2391(92)90147-r 1403271.

51. Kragskov J, Bosch C, Gyldensted C, Sindet-Pedersen S. Comparison of the reliability of craniofacial anatomic landmarks based on cephalometric radiographs and three-dimensional CT scans. The Cleft palate-craniofacial journal: official publication of the American Cleft Palate-Craniofacial Association. 1997;34(2):111–6. Epub 1997/03/01. doi: 10.1597/1545-1569_1997_034_0111_cotroc_2.3.co_2 9138504.

52. Arnett GW, Bergman RT. Facial keys to orthodontic diagnosis and treatment planning—Part II. American journal of orthodontics and dentofacial orthopedics: official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics. 1993;103(5):395–411. Epub 1993/05/01. doi: 10.1016/s0889-5406(05)81791-3 8480709.

53. !! INVALID CITATION !!! [48, 49].

54. Lytle JJ. Etiology and indications for the management of impacted teeth. Northwest dentistry. 1995;74(6):23–32. Epub 1995/11/01. 9462087.

55. Vukelic A, Cohen JA, Sullivan AP, Perry GH. Extending Genome-Wide Association Study Results to Test Classic Anthropological Hypotheses: Human Third Molar Agenesis and the "Probable Mutation Effect". Hum Biol. 2017;89(2):157–69. Epub 2018/01/05. doi: 10.13110/humanbiology.89.2.03 29299963.

56. Gemeinsamer Bundesausschuss Qualitätsbeurteilungs-Richtlinien für die Kernspintomographie. Bundesanzeiger. 2000;28:2013–16.

57. Carter K, Worthington S. Morphologic and Demographic Predictors of Third Molar Agenesis: A Systematic Review and Meta-analysis. J Dent Res. 2015;94(7):886–94. Epub 2015/04/18. doi: 10.1177/0022034515581644 25883107.

58. Knutsson K, Brehmer B, Lysell L, Rohlin M. Pathoses associated with mandibular third molars subjected to removal. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 1996;82:10–7. doi: 10.1016/s1079-2104(96)80371-4 8843448

59. Friedman J. The Prophylactic Extraction of Third Molars: A Public Health Hazard. Health Policy and Ethics. 2007;97(9):1554–9.

60. Harradine N, Pearson M, Toth B. The effect of extraction of third molars on late lower incisor crowding: a randomized controlled trial. Br J Orthod. 1998;25(2):117–22. doi: 10.1093/ortho/25.2.117 9668994

61. Song F, Landes D, Glenny A, Sheldon T. Prophylactic removal of impacted third molars: an assessment of published reviews. Br Dent J. 1997;182(9):339–46. doi: 10.1038/sj.bdj.4809378 9175290

62. Worrall S, Riden K, Haskell R, Corrigan A. UK National Third Molar project: the initial report. Br J Oral Maxillofac Surg. 1998;36(1):14–8. doi: 10.1016/s0266-4356(98)90740-9 9578249

63. Hazelkorn H, Macek M. Perception of the Need for Removal of Impacted Third Molars by General Dentists and Oral and Maxillofacial Surgeons. J Oral Maxillofac Surg. 1994;52:681–6. doi: 10.1016/0278-2391(94)90478-2 8006731


Článek vyšel v časopise

PLOS One


2019 Číslo 11