#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Estimation of maize evapotraspiration under drought stress - A case study of Huaibei Plain, China


Autoři: Hongwei Yuan aff001;  Yi Cui aff002;  Shaowei Ning aff003;  Shangming Jiang aff001;  Xianjiang Yuan aff001;  Guangmin Tang aff001
Působiště autorů: Key Laboratory of Water Conservancy and Water Resources of Anhui Province, Water Resources Research Institute of Anhui Province and Huaihe River Commission, Ministry of Water Resources, Hefei, China aff001;  Stage Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, China aff002;  School of Civil Engineering, Hefei University of Technology, Hefei, China aff003;  Interdisciplinary Centre for River Basin Environment, University of Yamanashi, Kofu, Japan aff004
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0223756

Souhrn

Given the importance and complexity of crop evapotranspiration estimation under drought stress, an experiment tailored for maize under drought stress was completed using six sets of large-scale weighing lysimeters at the Xinmaqiao Comprehensive Experimental Irrigation and Drainage Station, Anhui Province, China. Our aim was to analyze maize evapotranspiration under different drought conditions. Based on estimates of maize evapotranspiration under no drought stress using the dual crop coefficient approach, we optimized and calibrated basic crop coefficients Kcbini, Kcbmid, Kcbend, and the maximum crop coefficient Kcmax using a genetic algorithm. Measurements of solar radiation at the experimental station were used to derive the empirical parameters a and b from the Angstrom formula through the genetic algorithm, and then evapotranspiration was calculated for the reference crop (ET0). We then estimated the maize evapotranspiration under drought using the dual crop coefficient approach. The results indicated that a slight water deficit during the earlier stage of vegetative growth may stimulate the maize homeostatic mechanism and increase tolerance to drought stress in later growth periods. Maize evapotranspiration significantly decreased if drought stress continued into the elongation stage, and the same degree of drought stress had a greater influence on the middle and later stages of vegetative and reproductive growth. The calibrated results for Kcbini, Kcbmid, Kcbend, and Kcmax were 0.155, 1.218, 0.420 and 1.497 respectively. We calculated the root-mean-square error (RMSE), mean absolute error (MAE), and mean relative error (MRE) of maize evapotranspiration under no drought stress over the full growing season using a dual crop coefficient approach, and the results were 1.33 mm/day, 0.99 mm/day, and 1.30%, respectively, or 18.40%, 17.50%, and 91.11% lower than results using the recommended coefficients. The RMSE, MAE, and MRE results for maize under drought stress during two full growth periods were 1.18 mm/day, 0.98 mm/day, and 13.92%, respectively. These results were higher than maize without drought stress, but better than the estimated results based on FAO-56 recommended values. Therefore, maize evapotranspiration estimation under drought stress using the dual crop coefficient approach and genetic algorithm was reasonable and reliable. This study provides a theoretical basis for developing suitable regional irrigation programs and decreasing losses due to agricultural drought.

Klíčová slova:

Agricultural irrigation – Cereal crops – Crop genetics – Crops – Drought – Maize – Plant resistance to abiotic stress – Solar radiation


Zdroje

1. Gao JQ, Qiao M, Qiu XF, Zeng Y, Hua HH, Ye XZ, et al. Estimation of Actual Evapotranspiration Distribution in the Huaihe River Upstream Basin Based on the Generalized Complementary Principle. Advances in Meteorology,Volume 2018, Article ID 2158168, 9 pages, https://doi.org/10.1155/2018/2158168

2. Xu XH, Yu MX, Lu JL, Liu XL. Potential evapotranspiration estimation in the upper Huaihe River basin, China. Conference: 12th International Conference on Hydroinformatics (HIC)—Smart Water for the Future. Location: SOUTH KOREA. Date: AUG 21–26, 2016. Sponsor(s): Incheon Metropolitan Govt; Korea Tourism Org; Smart Water Grid Res Grp 12TH INTERNATIONAL CONFERENCE ON HYDROINFORMATICS (HIC 2016)—SMART WATER FOR THE FUTURE. Book Series: Procedia Engineering Volume: 154, Pages: 1018–1025, Published: 2016.

3. Zhao WS, Shang YR, Huang DH, Wang YJ. Progression of agricultural drought disaster risk analysis. Water Sci. Eng. Technol. 2007, 6, 1–5.

4. Duan HD. Several problems of Huaihe river management planning should be considered in the 21st century. Water Res. Plan. Des. 2001,2, 24–27.

5. Du Y. Study on Risk Assessment of Agricultural Drought Disaster in Huaihe River Basin; Hefei University of Tech.: Hefei, China, 2013.

6. Water Resources Research Institute of Anhui Province and Huaihe River Commission, Ministry of Water Resource. Drought Relief Plan of Anhui Province.Hefei.China, 2010.

7. Li D, Jing YS, Qi H. An analysis of disaster risk for continuous cloudy-rainy weather during the filling stage of maize on the Huaibei Plain, Anhui. Resour. Sci. 2015, 37, 700–709.

8. Qi H, Zhu YW, Wang DY, Qi SE, Li D. Studies on drought forecast model and irrigation service systems in Huaibei areas. Chin. J. Agrometeorol. 2009, 30, 596–600.

9. Bao YS, Yan J, Min JZ, Wang DM, Li ZT, Li XC. Agricultural drought monitoring in north Jiangsu by using temperature vegetation dryness index. Trans. CSAE 2014, 30, 163–172, doi: 10.3969/j.issn.1002-6819.2014.07.019

10. Feng Y, Cui NB, Gong DZ, Wang HB, Hao WP, Mei XR. Estimating rainfed spring maize evapotranspiration using modified dual crop coefficient approach based on leaf area index. Trans. CSAE 2016, 32, 90–98, doi: 10.11975/j.issn.1002-6819.2016.09.013

11. Shi XH, Cai H.J.; Zhao L.L.; Yang P.; Wang Z.S. Estimation of greenhouse tomato evapotranspiration under deficit irrigation based on SIMDualKc model. Trans. CSAE 2015, 31, 131–138, doi: 10.11975/j.issn.1002-6819.2015.22.018

12. Wang W, Wang PX, Xie Y. Estimation of evapotranspiration optimized by crop coefficient based on dynamic simulation. Trans. Chin. Soc. Agric. Mach. 2015, 46, 129–136, doi: 10.6041/j.issn.1000-1298.2015.11.018

13. Zheng Z, Cai HJ, Yu LY, Wang J. Comparison of two crop evapotranspiration calculating approaches in CSM-CERES-wheat model. Trans. Chin. Soc. Agric. Mach. 2016, 47, 179–191, doi: 10.6041/j.issn.1000-1298.2016.08.023

14. Peng SZ, Ding JL, Mao Z, Xu JZ, Li DX. Estimation and verification of crop coefficient for water saving irrigation of late rice using the FAO-56 method. Trans. CSAE 2007, 23, 30–34, doi: 10.3321/j.issn:1002–6819.2007.07.006

15. Martins JD, Rodrigues GC, Paredes P, Carlesso R, Oliveira ZB, Knies AE, et al. Dual crop coefficients for maize in southern Brazil: Model testing for sprinkler and drip irrigation and mulched soil. Biosyst. Eng. 2013, 115, 291–310, doi: 10.1016/j.biosystemseng.2013.03.016

16. Wang XY. Study of the estimating methods for evapotranspiration in farmland. Syst. Sci. Compr. Stud. Agric. 2003, 19, 81–84.

17. Girona J, Marsal J, Mata M, Del CJ. Pear crop coefficients obtained in a large weighing lysimeter. Acta Hortic. 2004, 664, 277–281, doi: 10.17660/ActaHortic.2004.664.33

18. Sun JS, Xiong YZ, Kang SZ. Research method and progress of farmland evapotranspiration. Irrig. Drain. 1993, 13, 36–38.

19. Richard WT, Steven RE, Terry AH. The Bowen ratio-energy balance method for estimating latent heat flux of irrigated alfalfa evaluated in semi-arid, advective environment. Agric. For. Meteorol. 2000, 103, 335–348.

20. Manuel WT, Francesc IC. Simplifying diurnal evapotranspiration estimates over short full-canopy crops. Agron. J. 2000, 92, 628–632.

21. Pei H, Fan YD, Wu RN. Sense remotely soil moisture through meteorological satellite. J. Arid Land Res. Environ. 1999, 13, 73–76.

22. Liu Y, Pereira LS. Validation of FAO methods for estimating crop coefficients. Trans. CSAE 2000, 16, 26–30, doi: 10.3321/j.issn:1002–6819.2000.05.007

23. Duchemin B, Hadria R, Erraki S, Boulet G, Maisongrande P, Chehbouni A, et al. Monitoring wheat phenology and irrigation in Central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agric. Water Manag. 2006, 79, 1–27, doi: 10.1016/j.agwat.2005.02.013

24. DeJonge KC, Ascough JC, Andales AA, Hansen NC, Garcia LA, Arabi M. Improving evapotranspiration simulations in the CERES-Maize model under limited irrigation. Agric. Water Manag. 2012, 115, 92–103, doi: 10.1016/j.agwat.2012.08.013

25. Gontia NK, Tiwari KN. Estimation of crop coefficient and evapotranspiration of wheat (Triticum aestivum) in an irrigation command using remote sensing and GIS. Water Res. Manag. 2010, 24, 1399–1414, doi: 10.1007/s11269-009-9505-3

26. Zhao NN, Liu Y, Cai JB. Calculation of crop coefficient and water consumption of summer maize. J. Hydraul. Eng. 2010, 41, 953–959.

27. Zhao LW, Ji XB. Quantification of transpiration and evaporation over agricultural field using the FAO-56 dual crop coefficient approach—A case study of the maize field in an oasis in the middle stream of the Heihe river basin in Northwest China. Sci. Agric. Sin. 2010, 43, 4016–4026.

28. Fan YQ, Cai HJ. Comparison of crop water requirements computed by single crop coefficient approach and dual crop coefficient approach. J. Hydraul. Eng. 2002, 33, 50–54, doi: 10.3321/j.issn:0559–9350.2002.03.009

29. Su MS, Li JS, Rao MJ. Estimation of crop coefficients for sprinkler-irrigated maize and sweet maize using a weighing lysimeter. Trans. CSAE 2005, 21, 25–29, doi: 10.3321/j.issn:1002–6819.2005.08.006

30. Hu QF, Yang DW, Wang YT, Yang HB. Effects of Angstrom coefficients on ET0 estimation and the applicability of FAO recommended coefficient values in China. Adv. Water Sci. 2010, 21, 644–652.

31. Yuan HW, Yuan XJ, Tang GM. Correction of parameters in Angstrom formula and analysis of total solar radiation characteristics in Huaibei plain. J. Drain. Irrig. Machin. Eng. 2018, 36, 426–432, doi: 10.3969/j.issn.1674-8530.17.0216

32. Jin JL, Yang XH, Ding J. An improved simple genetic algorithm—Accelerating genetic algorithm. Syst. Eng. Theory Pract. 2001, 21, 8–13, doi: 10.3321/j.issn:1000–6788.2001.04.002

33. Lai MH. Study on Ecological Water Requirement and Optimal Water Resources Allocation Model of Irrigation District; Hohai University: Nanjing, China, 2004.

34. Zhang X. Ecological & Environmental Water Requirement and Water Resources Reasonable Allocation for Region; Northwest A&F University: Xianyang, China, 2004.

35. Zhao JS. Study on Holistic Model for Optimization of Water Resources Allocation Based on Complex Adaptive System Theory; Tsinghua University: Beijing, China, 2003.

36. Jin JL. Genetic Algorithm and Its Application to Water Problems; Hohai University: Nanjing, China, 1998.

37. Song SB, Lu HX. Optimization model of rotation irrigation channel distribution and solution with genetic algorithm. Trans. CSAE 2004, 20, 40–44, doi: 10.3321/j.issn:1002–6819.2004.02.010

38. Xing ZX, Fu Q, Xiao JH. Genetic algorithms to optimize the uneven subregional water supply in water supply system in irrigated areas. Trans. CSAE 2005, 21, 47–51, doi: 10.3321/j.issn:1002–6819.2005.04.011

39. Chen NX, Li YP, Xu CG. Optimal deployment of water resources based on multi-objective genetic algorithm. J. Hydraul. Eng. 2006, 37, 308–313, doi: 10.3321/j.issn:0559–9350.2006.03.009

40. Sun YF, Zhang SH, Wang XL, Mei CS. Multi-objective optimization of regional water resources based on mixed genetic algorithm. Syst. Eng. Theory Pract. 2009, 29, 139–144, doi: 10.3321/j.issn:1000–6788.2009.01.019

41. Qie ZH, Han LM, Wu XM. Optimization of crop irrigation quantity and irrigation date based on the improved NSGA-II. Trans. Chin. Soc. Agric. Mach. 2011, 42, 106–110, doi: 10.3969/j.issn.1000-1298.2011.05.019

42. Huo JJ, Shang SH. Optimization method for crop irrigation scheduling based on simulation technique and genetic algorithms. Trans. CSAE 2007, 23, 23–28, doi: 10.3321/j.issn:1002–6819.2007.04.005

43. Zhang B, Yuan SQ, Li H, Cong XQ, Zhao BJ. Optimized irrigation-yield model for winter wheat based on genetic algorithm. Trans. CSAE 2006, 22, 12–15, doi: 10.3321/j.issn:1002–6819.2006.08.003

44. Zhang B, Yuan SQ, Li H, Cheng L, Jiang HF. Multi-crop optimization irrigation model by genetic algorithms of best saving tactics. Trans. CSAE 2005, 21, 25–29, doi: 10.3321/j.issn:1002–6819.2005.07.006

45. Fu Q, Wang LK, Men BH, Jin JL. A new method of optimizing irrigation system under non-sufficient irrigation-multi-dimensional dynamic planning based on RAGA. J. Hydraul. Eng. 2003, 1, 123–128, doi: 10.3321/j.issn:0559–9350.2003.01.024

46. Zhang B, Yuan SQ, Zhang JS, Sun J, Li H, Huang WS. Different genetic algorithms parameter effect for searching optimal solution of optimization irrigation model. Trans. Chin. Soc. Agric. Mach. 2008, 39, 129–133.

47. Gao YY, Xu XY, Wang HR, Gao H, Yin XL. New model for water use efficiency evaluation of China and its application. Syst. Eng. Theory Pract. 2013, 33, 776–784, doi: 10.3969/j.issn.1000-6788.2013.03.029

48. Ministry of Water Resources of the People’s Republic of China. SL 13–2015 Specifications for irrigation experiment. China Water & Power Press, Beijing, China.

49. Allen RG, Pereira LS, Smith M, Raes D, Wright JL. FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions. J. Irrig. Drain. Eng. 2005, 131, 2–13, doi: 10.1061/(ASCE)0733-9437(2005)131:1(2)


Článek vyšel v časopise

PLOS One


2019 Číslo 11
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

KOST
Koncepce osteologické péče pro gynekology a praktické lékaře
nový kurz
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Svět praktické medicíny 5/2023 (znalostní test z časopisu)

Imunopatologie? … a co my s tím???
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#