#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Highly accurate prediction of flammability limits of chemical compounds using novel integrated hybrid models


Autoři: Mohanad El-Harbawi aff001;  Brahim Belhaouari Samir aff002;  Lahssen El blidi aff001;  Ouahid Ben Ghanem aff003
Působiště autorů: Department of Chemical Engineering, King Saud University, Riyadh, Saudi Arabia aff001;  Division of Information & Computing Technology, College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar aff002;  Department of process plant operations, Qatar Technical, Doha, Qatar aff003;  Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Tronoh, Perak, Malaysia aff004
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0224807

Souhrn

Two novel and highly accurate hybrid models were developed for the prediction of the flammability limits (lower flammability limit (LFL) and upper flammability limit (UFL)) of pure compounds using a quantitative structure–property relationship approach. The two models were developed using a dataset obtained from the DIPPR Project 801 database, which comprises 1057 and 515 literature data for the LFL and UFL, respectively. Multiple linear regression (MLR), logarithmic, and polynomial models were used to develop the models according to an algorithm and code written using the MATLAB software. The results indicated that the proposed models were capable of predicting LFL and UFL values with accuracies that were among the best (i.e. most optimised) reported in the literature (LFL: R2 = 99.72%, with an average absolute relative deviation (AARD) of 0.8%; UFL: R2 = 99.64%, with an AARD of 1.41%). These hybrid models are unique in that they were developed using a modified mathematical technique combined three conventional methods. These models afford good practicability and can be used as cost-effective alternatives to experimental measurements of LFL and UFL values for a wide range of pure compounds.

Klíčová slova:

Artificial neural networks – Gases – Genetic algorithms – Molecular structure – Organic compounds – Polynomials – Support vector machines


Zdroje

1. Ma T. Ignitability and explosibility of gases and vapors. New York: Springer; 2015.

2. ASTM E681-09(2015). Standard test method for concentration limits of flammability of chemicals (vapors and gases). West Conshohocken, Pennsylvania: ASTM International; 2015.

3. Le Chatelier H. Estimation of fire damp by flammability limits. Ann Mines. 1891;8: 388–395.

4. Coward HF, Jones GW. Limits of flammability of gases and vapors. In: U.S. Bureau of Mines, Bulletin 503. U.S. Bureau of Mines; 1952.

5. Zabetakis MG. Flammability characteristics of combustible gases and vapors. In: U.S. Bureau of Mines, Bulletin 627. U.S. Bureau of Mines; 1965.

6. Kuchta JM. Investigation of fire and explosion accidents in the chemical, mining and fuel-related industries-A manual. In: U.S. Bureau of Mines, Bulletin 580. U.S. Bureau of Mines; 1985.

7. Crowl DA, Louvar JF. Chemical process safety: fundamentals with applications. 3rd ed. Prentice-Hall; 2010.

8. Griffiths JF. Flame and combustion. 3rd ed. Routledge; 2019.

9. Murzin DY. Chemical reaction technology. Walter de Gruyter GmbH & Co KG; 2015.

10. El-Harbawi M, Shaaran SN, Ahmad F, Wahi MA, Abdul A, Laird DW, et al. Estimating the flammability of vapours above refinery wastewater laden with hydrocarbon mixtures. Fire Saf J. 2012;51: 61–67.

11. Clement JK. The influence of inert gases on inflammable gaseous mixtures. In: Bureau of Mines, Technical Paper 43. Bureau of Mines; 1913.

12. Burgess DS, Furno AL, Kuchta JM, Mura KE. Flammability of mixed gases. In: U.S. Bureau of Mines, Report of Investigations. U.S. Bureau of Mines; 1982.

13. Coward HF, Brinsley F. The dilution limits of inflammability of gaseous mixtures. J Chem Soc. 1914;105–106: 1859–1885.

14. Project 801, Evaluated process design data, public release documentation, design institute for physical properties (DIPPR). American Institute of Chemical Engineers (AIChE); 2006.

15. Babrauskas V. Ignition handbook database. Fire Science Publishers; 2003.

16. Humphry D. On the fire-damp of coal mines and on methods of lighting the mines so as to prevent its explosion. Philos Trans R Soc London. 1816;106: 1–22.

17. NFPA. Fire hazard properties of flammable liquids, gases and volatile solids. NFPA 325M. Quincy, Massachusetts: National Fire Protection Association; 1984.

18. ASTM E1515-14. Standard test method for minimum explosible concentration of combustible dusts. West Conshohocken, Pennsylvania: ASTM International; 2014. www.astm.org.

19. Shu C-M., Wen P-J. Investigation of the flammability zone of o-xylene under various pressures and oxygen concentrations at 150°C. J Loss Prev Process Ind. 2002;15: 253–263.

20. Chang Y-M, Tseng J-M, Shu C.-M, Hu K-H. Flammability studies of benzene and methanol with various vapor mixing ratios at 150°C. Korean J Chem Eng. 2005;22: 803–812.

21. Chang Y-M, Yun R-L, Wan T-J, Shu C-M. Experimental study of flammability characteristics of 3-picoline/water under various initial conditions. Chem Eng Res Des. 2007;85: 1020–1026.

22. Liao SY, Cheng Q, Jiang DM, Gao J. Experimental study of flammability limits of natural gas–air mixture. J Haz Mat. 2005;119: 81–84.

23. Brooks M., Crowl D. Vapor flammability above aqueous solutions of flammable liquids. J Loss Prev Process Ind. 2007;20: 477–485.

24. Brooks M., Crowl D. Flammability envelopes for methanol, ethanol, acetonitrile and toluene. J Loss Prev Process Ind. 2007;20: 144–150.

25. Wu SY, Lin NK, Shu CM. Effects of flammability characteristics of methane with three inert gases. Process Saf Prog. 2010;29: 349–352.

26. Liaw HJ, Chen CC, Lin NK, Shu CM, Shen SY. Flammability limits estimation for fuel–air–diluent mixtures tested in a constant volume vessel. Process Saf Environ Prot. 2016;100: 150–162.

27. Britton LG. Two hundred years of flammable limits. Process Saf Prog. 2002;21: 1–11.

28. Albahri TA. Flammability characteristics of pure hydrocarbons. Chemical Eng Sci. 2003;58: 3629–3641.

29. Gharagheizi F. A QSPR model for estimation of lower flammability limit temperature of pure compounds based on molecular structure. J Haz Mat. 2009;169: 217–220.

30. Gharagheizi F. A new group contribution-based model for estimation of lower flammability limit of pure compounds. J Haz Mat. 2009;170: 595–604.

31. Gharagheizi F. Prediction of upper flammability limit percent of pure compounds from their molecular structures. J Haz Mat. 2009;167: 507–510.

32. Gharagheizi F. Chemical structure-based model for estimation of the upper flammability limit of pure compounds. Energy Fuels. 2010;24: 3867–3871.

33. Lazzús JA. Neural network/particle swarm method to predict flammability limits in air of organic compounds. Thermochim Acta. 2011;512: 150–156.

34. Rowley JR, Rowley RL, Wilding WV. Estimation of the lower flammability limit of organic compounds as a function of temperature. J Haz Mat. 2011;18: 551–557.

35. Bagheri M, Rajabi M, Mirbagheri M, Amin M. BPSO-MLR and ANFIS based modeling of lower flammability limit. J Loss Prev Process Ind. 2012;25: 373–382.

36. Pan Y, Jiang J, Wang R, Cao H, Cui Y. Prediction of the upper flammability limits of organic compounds from molecular structures. Ind Eng Chem Res. 2009;48: 5064–5069.

37. Pan Y, Jiang J, Wang R, Cao H, Cui Y. A novel QSPR model for prediction of lower flammability limits of organic compounds based on support vector machine. J Haz Mat. 2009;168: 962–969.

38. Pan Y, Jiang Y, Ding X, Wang R, Jiang J. Prediction of flammability characteristics of pure hydrocarbons from molecular structures. AIChE J. 2010;56: 690–701.

39. Albahri TA. Prediction of the lower flammability limit percent in air of pure compounds from their molecular structures. Fire Saf J. 2013;59: 188–201.

40. Frutiger J, Marcarie C, Abildskov J, Sin G. Group-contribution based property estimation and uncertainty analysis for flammability-related properties. J Haz Mat. 2016;318: 783–793.

41. Chen CC, Lai CP, Guo YC. A novel model for predicting lower flammability limits using Quantitative Structure Activity Relationship approach. J Loss Prev Process Ind. 2017;49: 240–247.

42. Rowley JR. Flammability limits, flash points, and their consanguinity: critical analysis, experimental exploration, and prediction. PhD Thesis, Brigham Young University, 2010.

43. Dragon for Windows (Software for Molecular Descriptor Calculations), Version 5.4. Talete S.R.L.; 2006 (http://www.talete.mi.it/).

44. Todeschini R, Consonni V. Handbook of molecular descriptors. Wiley-VCH; 2000.

45. Chatterjee S, Hadi AS. Regression analysis by example. 4th ed. New York: John Wiley; 2006.

46. Angelov PP. Evolving rule-based models: a tool for design of flexible adaptive systems. Physica-Verlag: A Springer-Verlag Company; 2002.


Článek vyšel v časopise

PLOS One


2019 Číslo 11
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

KOST
Koncepce osteologické péče pro gynekology a praktické lékaře
nový kurz
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Svět praktické medicíny 5/2023 (znalostní test z časopisu)

Imunopatologie? … a co my s tím???
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#