Sex differences in thigh muscle volumes, sprint performance and mechanical properties in national-level sprinters

Autoři: Sergi Nuell aff001;  Víctor Illera-Domínguez aff001;  Gerard Carmona aff002;  Xavier Alomar aff003;  Josep Maria Padullés aff001;  Mario Lloret aff001;  Joan Aureli Cadefau aff001
Působiště autorů: Institut Nacional d’Educació Física de Catalunya (INEFC), Universitat de Barcelona, Barcelona (UB), Spain aff001;  Futbol Club Barcelona (FCB), Barcelona, Spain aff002;  Creu Blanca, Barcelona, Spain aff003
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224862


The purpose of this study was to determine and compare thigh muscle volumes (MVs), and sprint mechanical properties and performance between male and female national-level sprinters. We also studied possible relationships between thigh MVs and sprint performance. Nine male and eight female national-level sprinters participated in the study. T1-weighted magnetic resonance images of the thighs were obtained to determine MVs of quadriceps, hamstrings and adductors. Sprint performance was measured as the time to cover 40 and 80 m. Instantaneous sprint velocity was measured by radar to obtain theoretical maximum force (F0), theoretical maximum velocity (V0) and maximum power (Pmax). When MVs were normalized by height–mass, males showed larger hamstrings (13.5%, ES = 1.26, P < 0.05) compared with females, while quadriceps and adductors showed no statistically significant differences. Males were extremely faster than females in 40 m (14%, ES = 6.68, P < 0.001) and in 80 m (15%, ES = 5.01, P < 0.001. Males also showed increased sprint mechanical properties, with larger F0 (19%, ES = 1.98, P < 0.01), much larger Pmax (46%, ES = 3.76, P < 0.001), and extremely larger V0 (23%, ES = 6.97, P < 0.001). With the pooled data, hamstring and adductor MVs correlated strongly (r = -0.685, P < 0.01) and moderately (r = -0.530, P < 0.05), respectively, with sprint performance; while quadriceps showed no association. The sex-stratified analysis showed weaker associations compared with pooled data, most likely due to small sample size. In conclusion, males were faster than females and showed larger MVs, especially in hamstrings. Moreover, regarding the thigh muscles, hamstrings MV seems the most related with sprint performance as previously proposed.

Klíčová slova:

Acceleration – Anthropometry – Human performance – Magnetic resonance imaging – Mechanical properties – Physiological parameters – Running – Velocity


1. Brughelli M, Cronin J, Chaouachi A. Effects of running velocity on running kinetics and kinematics. J strength Cond Res. 2011;25: 933–939. doi: 10.1519/JSC.0b013e3181c64308 20703170

2. Samozino P, Rabita G, Dorel S, Slawinski J, Peyrot N, Saez de Villarreal E, et al. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand J Med Sci Sports. 2016;26: 648–658. doi: 10.1111/sms.12490

3. Morin J-B, Bourdin M, Edouard P, Peyrot N, Samozino P, Lacour J-R. Mechanical determinants of 100-m sprint running performance. Eur J Appl Physiol. 2012;112: 3921–3930. doi: 10.1007/s00421-012-2379-8 22422028

4. Rabita G, Dorel S, Slawinski J, Saez-de-Villarreal E, Couturier A, Samozino P, et al. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports. 2015;25: 583–594. doi: 10.1111/sms.12389 25640466

5. Fukunaga T, Miyatani M, Tachi M, Kouzaki M, Kawakami Y, Kanehisa H. Muscle volume is a major determinant of joint torque in humans. Acta Physiol Scand. 2001;172: 249–255. doi: 10.1046/j.1365-201x.2001.00867.x 11531646

6. Sugisaki N, Kanehisa H, Tauchi K, Okazaki S, Iso S, Okada J. The Relationship between 30-m Sprint Running Time and Muscle Cross-sectional Areas of the Psoas Major and Lower Limb Muscles in Male College Short and Middle Distance Runners. Int J Sport Heal Sci. 2011;9: 1–7. doi: 10.5432/ijshs.20100018

7. Tottori N, Suga T, Miyake Y, Tsuchikane R, Otsuka M, Nagano A, et al. Hip Flexor and Knee Extensor Muscularity Are Associated With Sprint Performance in Sprint-Trained Preadolescent Boys. Pediatr Exerc Sci. 2017; 1–9. doi: 10.1123/pes.2016-0226 28787247

8. Miyake Y, Suga T, Otsuka M, Tanaka T, Misaki J, Kudo S, et al. The knee extensor moment arm is associated with performance in male sprinters. Eur J Appl Physiol. 2017;117: 533–539. doi: 10.1007/s00421-017-3557-5 28188370

9. Sugisaki N, Kobayashi K, Tsuchie H, Kanehisa H. Associations Between Individual Lower Limb Muscle Volumes and 100-m Sprint Time in Male Sprinters. Int J Sports Physiol Perform. 2017; 1–19. doi: 10.1123/ijspp.2016-0703 28605265

10. Ema R, Sakaguchi M, Kawakami Y. Thigh and Psoas Major Muscularity and Its Relation to Running Mechanics in Sprinters. Med Sci Sports Exerc. 2018;50: 2085–2091. doi: 10.1249/MSS.0000000000001678 30222688

11. Ransdell LB, Wells CL. Sex Differences in Athletic Performance. Women Sport Phys Act J. 1999;8: 55–81. doi: 10.1123/wspaj.8.1.55

12. Cheuvront SN, Carter R, Deruisseau KC, Moffatt RJ. Running performance differences between men and women:an update. Sports Med. 2005;35: 1017–1024. doi: 10.2165/00007256-200535120-00002 16336006

13. Seiler S, De Koning JJ, Foster C. The fall and rise of the gender difference in elite anaerobic performance 1952–2006. Med Sci Sports Exerc. 2007;39: 534–540. doi: 10.1249/01.mss.0000247005.17342.2b 17473780

14. Perez-Gomez J, Rodriguez GV, Ara I, Olmedillas H, Chavarren J, Gonzalez-Henriquez JJ, et al. Role of muscle mass on sprint performance: gender differences? Eur J Appl Physiol. 2008;102: 685–694. doi: 10.1007/s00421-007-0648-8 18084774

15. Weyand PG, Davis JA. Running performance has a structural basis. J Exp Biol. 2005;208: 2625–2631. doi: 10.1242/jeb.01609 16000532

16. Douglas J, Pearson S, Ross A, McGuigan M. Kinetic Determinants of Reactive Strength in Highly Trained Sprint Athletes. J strength Cond Res. 2018;32: 1562–1570. doi: 10.1519/JSC.0000000000002245 28930875

17. Slawinski J, Termoz N, Rabita G, Guilhem G, Dorel S, Morin JB, et al. How 100-m event analyses improve our understanding of world-class men’s and women’s sprint performance. Scand J Med Sci Sport. 2017;27: 45–54. doi: 10.1111/sms.12627 26644061

18. Handsfield GG, Knaus KR, Fiorentino NM, Meyer CH, Hart JM, Blemker SS. Adding muscle where you need it: non-uniform hypertrophy patterns in elite sprinters. Scand J Med Sci Sports. 2017;27: 1050–1060. doi: 10.1111/sms.12723 27373796

19. Withers RT, Craig NP, Bourdon PC, Norton KI. Relative body fat and anthropometric prediction of body density of male athletes. Eur J Appl Physiol Occup Physiol. 1987;56: 191–200. doi: 10.1007/bf00640643 3569225

20. Nuell S, Illera-Dominguez VR, Carmona G, Alomar X, Padulles JM, Lloret M, et al. Hypertrophic muscle changes and sprint performance enhancement during a sprint-based training macrocycle in national-level sprinters. Eur J Sport Sci. 2019; 1–10. doi: 10.1080/17461391.2019.1668063 31526116

21. Damas F, Phillips SM, Lixandrao ME, Vechin FC, Libardi CA, Roschel H, et al. Early resistance training-induced increases in muscle cross-sectional area are concomitant with edema-induced muscle swelling. Eur J Appl Physiol. 2016;116: 49–56. doi: 10.1007/s00421-015-3243-4 26280652

22. Nordez A, Jolivet E, Sudhoff I, Bonneau D, de Guise JA, Skalli W. Comparison of methods to assess quadriceps muscle volume using magnetic resonance imaging. J Magn Reson Imaging. 2009;30: 1116–1123. doi: 10.1002/jmri.21867 19856445

23. Illera-Dominguez V, Nuell S, Carmona G, Padulles JM, Padulles X, Lloret M, et al. Early Functional and Morphological Muscle Adaptations During Short-Term Inertial-Squat Training. Front Physiol. 2018;9: 1265. doi: 10.3389/fphys.2018.01265 30246805

24. Handsfield GG, Meyer CH, Hart JM, Abel MF, Blemker SS. Relationships of 35 lower limb muscles to height and body mass quantified using MRI. J Biomech. 2014;47: 631–638. doi: 10.1016/j.jbiomech.2013.12.002 24368144

25. Lenhard W, Lenhard A. Computation of Effect Sizes. 2014. doi: 10.13140/RG.2.1.3478.4245

26. Ellis P. The essential guide to effect sizes: Statistical power, meta-analysis, and the interpretation of research results. Essent Guid to Eff Sizes Stat Power, Meta-Analysis, Interpret Res Results. 2010. doi: 10.1017/CBO9780511761676

27. Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41: 3–13. doi: 10.1249/MSS.0b013e31818cb278 19092709

28. Nagahara R, Zushi K. Development of maximal speed sprinting performance with changes in vertical, leg and joint stiffness. J Sports Med Phys Fitness. 2017;57: 1572–1578. doi: 10.23736/S0022-4707.16.06622-6 27406013

29. Esbjornsson Liljedahl M, Holm I, Sylven C, Jansson E. Different responses of skeletal muscle following sprint training in men and women. Eur J Appl Physiol Occup Physiol. 1996;74: 375–383. doi: 10.1007/bf02226935 8911831

30. Wiemann K, Tidow G. Relative activity of hip and knee extensors in sprinting-implications for training. New Stud Athl. 1995;10: 29.

31. Morin J-B, Gimenez P, Edouard P, Arnal P, Jimenez-Reyes P, Samozino P, et al. Sprint Acceleration Mechanics: The Major Role of Hamstrings in Horizontal Force Production. Front Physiol. 2015;6: 404. doi: 10.3389/fphys.2015.00404 26733889

32. Neumann DA. Kinesiology of the hip: a focus on muscular actions. J Orthop Sports Phys Ther. 2010;40: 82–94. doi: 10.2519/jospt.2010.3025 20118525

Článek vyšel v časopise


2019 Číslo 11