Reliability and construct validity of the stepping-forward affordance perception test for fall risk assessment in community-dwelling older adults


Autoři: Gabriela Almeida aff001;  Jorge Bravo aff001;  Hugo Folgado aff001;  Hugo Rosado aff001;  Felismina Mendes aff002;  Catarina Pereira aff001
Působiště autorů: Departamento de Desporto e Saúde, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal aff001;  Comprehensive Health Research Center, Lisboa, Portugal aff002;  Escola Superior de Enfermagem S. João de Deus, Universidade de Évora, Évora, Portugal aff003
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225118

Souhrn

Thus far, few studies have examined the estimation and actual performance of locomotor ability in older adults. To our knowledge, there are no studies examining the relationship between stepping-forward estimation versus ability and fall occurrence. The aim of this study was to develop and assess the reliability and validity of a new test for fall risk assessment in community-dwelling older adults. In total, 347 participants (73.1 ± 6.2 years; 266 women) were assessed for their perception of maximum distance for the stepping-forward and action boundary. The test was developed following the existing literature and expert opinions. The task showed strong internal consistency. Intraclass correlation ranged from 0.99 to 1 for intrarater agreement and from 0.83 to 0.97 for interrater agreement. Multivariate binary regression analysis models revealed an area under the curve (AUC) of 0.665 (95% CI: 0.608–0.723) for fallers and 0.728 (95% CI: 0.655–0.797) for recurrent fallers. The stepping-forward affordance perception test (SF-APT) was demonstrated to be accurate, reliable and valid for fall risk assessment. The results showed that a large estimated stepping-forward associated with an underestimated absolute error works as a protective mechanism for fallers and recurrent fallers in community-dwelling older adults. SF-APT is safe, quick, easy to administer, well accepted and reproducible for application in community or clinical settings by either clinical or nonclinical care professionals.

Klíčová slova:

Aging – Biological locomotion – Cognitive impairment – Elderly – Falls – Health care – Regression analysis – Research validity


Zdroje

1. WHO. WHO Global Report on Falls: Prevention in Older Age: World Health Organization; 2007.

2. Pereira CL, Baptista F, Infante P. Role of physical activity in the occurrence of falls and fall-related injuries in community-dwelling adults over 50 years old. Disabil Rehabil. 2014;36(2):117–24. Epub 2013/04/19. doi: 10.3109/09638288.2013.782355 23594055.

3. Gill DP, Zou GY, Jones GR, Speechley M. Comparison of regression models for the analysis of fall risk factors in older veterans. Ann Epidemiol. 2009;19(8):523–30. Epub 2009/04/28. doi: 10.1016/j.annepidem.2009.03.012 19394862.

4. Zhou H, Peng K, Tiedemann A, Peng J, Sherrington C. Risk factors for falls among older community dwellers in Shenzhen, China. Inj Prev. 2018:injuryprev-2017-042597.

5. Lord SR, Menz HB, Sherrington C. Home environment risk factors for falls in older people and the efficacy of home modifications. Age Ageing. 2006;35 Suppl 2(suppl_2):ii55–ii9. Epub 2006/08/24. doi: 10.1093/ageing/afl088 16926207.

6. Yang NP, Hsu NW, Lin CH, Chen HC, Tsao HM, Lo SS, et al. Relationship between muscle strength and fall episodes among the elderly: the Yilan study, Taiwan. Bmc Geriatrics. 2018;18(1):90. ARTN 90 doi: 10.1186/s12877-018-0779-2 WOS:000430749500001. 29653515

7. Palumbo P, Palmerini L, Bandinelli S, Chiari L. Fall risk assessment tools for elderly living in the community: can we do better? PLoS one. 2015;10(12):e0146247. doi: 10.1371/journal.pone.0146247 26716861

8. Lusardi MM, Fritz S, Middleton A, Allison L, Wingood M, Phillips E, et al. Determining Risk of Falls in Community Dwelling Older Adults: A Systematic Review and Meta-analysis Using Posttest Probability. Journal of Geriatric Physical Therapy. 2017;40(1):1–36. doi: 10.1519/JPT.0000000000000099 WOS:000391316300001. 27537070

9. Klenk J, Becker C, Palumbo P, Schwickert L, Rapp K, Helbostad JL, et al. Conceptualizing a Dynamic Fall Risk Model Including Intrinsic Risks and Exposures. J Am Med Dir Assoc. 2017;18(11):921–7. Epub 2017/09/17. doi: 10.1016/j.jamda.2017.08.001 28916290.

10. Fajen BR, Diaz G, Cramer C. Reconsidering the role of movement in perceiving action-scaled affordances. Hum Mov Sci. 2011;30(3):504–33. Epub 2011/02/22. doi: 10.1016/j.humov.2010.07.016 21333367.

11. Gibson JJ. The theory of affordances, In” Perceiving, Acting and Knowing”, Eds. RE Shaw and J. Bransford. Erlbaum; 1977.

12. Gibson J. The theory of affordances. The Ecological Approach to Visual Perception (pp. 127–143). Boston: Houghton Miffin; 1979.

13. Fajen BR, Riley MA, Turvey MT. Information, affordances, and the control of action in sport. int J Sport Phychol. 2009;40(1):79.

14. Luyat M, Domino D, Noël M. Can overestimating one's own capacities of action lead to fall? A study on the perception of affordance in the elderly. Psychol Neuropsychiatr Vieil. 2008;6(4):287–97. doi: 10.1684/pnv.2008.0149 19087910

15. Noel M, Bernard A, Luyat M. [The overestimation of performance: a specific bias of aging?]. Geriatr Psychol Neuropsychiatr Vieil. 2011;9(3):287–94. Epub 2011/09/08. doi: 10.1684/pnv.2011.0290 21896432.

16. Butler AA, Lord SR, Taylor JL, Fitzpatrick RC. Ability versus hazard: risk-taking and falls in older people. J Gerontol A Biol Sci Med Sci. 2015;70(5):628–34. Epub 2014/11/13. doi: 10.1093/gerona/glu201 25387729.

17. Delbaere K, Close JCT, Brodaty H, Sachdev P, Lord SR. Determinants of disparities between perceived and physiological risk of falling among elderly people: cohort study. Bmj-British Medical Journal. 2010;341:c4165. ARTN c416510.1136/bmj. WOS:000281213400004.

18. Konczak J, Meeuwsen HJ, Cress ME. Changing affordances in stair climbing: the perception of maximum climbability in young and older adults. J Exp Psychol Hum Percept Perform. 1992;18(3):691–7. Epub 1992/08/01. doi: 10.1037//0096-1523.18.3.691 1500869.

19. Ambrose AF, Paul G, Hausdorff JM. Risk factors for falls among older adults: A review of the literature. Maturitas. 2013;75(1):51–61. doi: 10.1016/j.maturitas.2013.02.009 WOS:000318392500008. 23523272

20. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98. doi: 10.1016/0022-3956(75)90026-6 1202204

21. Guerreiro M, Silva AP, Botelho MA, Leitão O, Castro-Caldas A, Garcia C. Adaptação à população portuguesa da tradução do Mini Mental State Examination (MMSE). Rev Port Neurol. 1994;1(9):9–10.

22. Almeida G, Luz C, Martins R, Cordovil R. Do children accurately estimate their performance of fundamental movement skills? JMLD. 2017;5(2):193–206.

23. Lamb SE, Jorstad-Stein EC, Hauer K, Becker C, Prevention of Falls Network E, Outcomes Consensus G. Development of a common outcome data set for fall injury prevention trials: the Prevention of Falls Network Europe consensus. J Am Geriatr Soc. 2005;53(9):1618–22. Epub 2005/09/03. doi: 10.1111/j.1532-5415.2005.53455.x 16137297.

24. Załuska W, Małecka T, Mozul S, Ksiazek A. Whole body versus segmental bioimpedance measurements (BIS) of electrical resistance (Re) and extracellular volume (ECV) for assessment of dry weight in end-stage renal patients treated by hemodialysis. Prz Lek. 2004;61(2):70–3. 15230144

25. Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420–8. Epub 1979/03/01. doi: 10.1037//0033-2909.86.2.420 18839484.

26. de Vet HC, Terwee CB, Ostelo RW, Beckerman H, Knol DL, Bouter LM. Minimal changes in health status questionnaires: distinction between minimally detectable change and minimally important change. Health Qual Life Outcomes. 2006;4(1):54.

27. Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):1–15. Epub 2000/07/25. doi: 10.2165/00007256-200030010-00001 10907753.

28. Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. Journal of Strength and Conditioning Research. 2005;19(1):231–40. doi: 10.1519/15184.1 WOS:000227147800038. 15705040

29. Joseph F, Hair J, Black W, Babin B, Anderson R. Multivariate data analysis: a global perspective (7th (Global Edition) ed.). United States: Prentice Hall; 2010.

30. Pereira C, Fernandes J, Raimundo A, Biehl-Printes C, Marmeleira J, Tomas-Carus P. Increased Physical Activity and Fitness above the 50th Percentile Avoid the Threat of Older Adults Becoming Institutionalized: A Cross-sectional Pilot Study. Rejuvenation Research. 2016;19(1):13–20. doi: 10.1089/rej.2015.1669 WOS:000371387200003. 26083134

31. Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med. 2016;15(2):155–63. Epub 2016/06/23. doi: 10.1016/j.jcm.2016.02.012 27330520; PubMed Central PMCID: PMC4913118.

32. Cesari P, Formenti F, Olivato P. A common perceptual parameter for stair climbing for children, young and old adults. Hum Mov Sci. 2003;22(1):111–24. Epub 2003/03/08. doi: 10.1016/s0167-9457(03)00003-4 12623183.

33. Hernandez D, Rose DJ. Predicting which older adults will or will not fall using the Fullerton Advanced Balance scale. Arch Phys Med Rehab. 2008;89(12):2309–15.

34. Kluft N, Bruijn SM, Weijer RHA, van Dieen JH, Pijnappels M. On the validity and consistency of misjudgment of stepping ability in young and older adults. PLoS One. 2017;12(12):e0190088. Epub 2017/12/22. doi: 10.1371/journal.pone.0190088 29267383; PubMed Central PMCID: PMC5739489.

35. Berg K, Wood-Dauphine S, Williams J, Gayton D. Measuring balance in the elderly: preliminary development of an instrument. Physiother Can. 1989;41(6):304–11.

36. Rose DJ, Lucchese N, Wiersma LD. Development of a multidimensional balance scale for use with functionally independent older adults. Archives of Physical Medicine and Rehabilitation. 2006;87(11):1478–85. doi: 10.1016/j.apmr.2006.07.263 WOS:000242143500010. 17084123

37. Swanenburg J, Nevzati A, Mittaz Hager AG, de Bruin ED, Klipstein A. The maximal width of the base of support (BSW): clinical applicability and reliability of a preferred-standing test for measuring the risk of falling. Arch Gerontol Geriatr. 2013;57(2):204–10. Epub 2013/05/21. doi: 10.1016/j.archger.2013.04.010 23684244.

38. Morais A, Santos S, Lebre P. Psychometric properties of the Portuguese version of the Examen Geronto-Psychomoteur (P-EGP). Educational Gerontology. 2016;42(7):516–27. doi: 10.1080/03601277.2016.1165068 WOS:000379258200007.

39. Rikli RE, Jones CJ. Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. Gerontologist. 2013;53(2):255–67. Epub 2012/05/23. doi: 10.1093/geront/gns071 22613940.

40. Tinetti ME. Performance-oriented assessment of mobility problems in elderly patients. J Am Geriatr Soc. 1986;34(2):119–26. Epub 1986/02/01. doi: 10.1111/j.1532-5415.1986.tb05480.x 3944402.


Článek vyšel v časopise

PLOS One


2019 Číslo 11