Reliability and construct validity of the stepping-forward affordance perception test for fall risk assessment in community-dwelling older adults

Autoři: Gabriela Almeida aff001;  Jorge Bravo aff001;  Hugo Folgado aff001;  Hugo Rosado aff001;  Felismina Mendes aff002;  Catarina Pereira aff001
Působiště autorů: Departamento de Desporto e Saúde, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal aff001;  Comprehensive Health Research Center, Lisboa, Portugal aff002;  Escola Superior de Enfermagem S. João de Deus, Universidade de Évora, Évora, Portugal aff003
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0225118


Thus far, few studies have examined the estimation and actual performance of locomotor ability in older adults. To our knowledge, there are no studies examining the relationship between stepping-forward estimation versus ability and fall occurrence. The aim of this study was to develop and assess the reliability and validity of a new test for fall risk assessment in community-dwelling older adults. In total, 347 participants (73.1 ± 6.2 years; 266 women) were assessed for their perception of maximum distance for the stepping-forward and action boundary. The test was developed following the existing literature and expert opinions. The task showed strong internal consistency. Intraclass correlation ranged from 0.99 to 1 for intrarater agreement and from 0.83 to 0.97 for interrater agreement. Multivariate binary regression analysis models revealed an area under the curve (AUC) of 0.665 (95% CI: 0.608–0.723) for fallers and 0.728 (95% CI: 0.655–0.797) for recurrent fallers. The stepping-forward affordance perception test (SF-APT) was demonstrated to be accurate, reliable and valid for fall risk assessment. The results showed that a large estimated stepping-forward associated with an underestimated absolute error works as a protective mechanism for fallers and recurrent fallers in community-dwelling older adults. SF-APT is safe, quick, easy to administer, well accepted and reproducible for application in community or clinical settings by either clinical or nonclinical care professionals.

Klíčová slova:

Aging – Biological locomotion – Cognitive impairment – Elderly – Falls – Health care – Regression analysis – Research validity


1. WHO. WHO Global Report on Falls: Prevention in Older Age: World Health Organization; 2007.

2. Pereira CL, Baptista F, Infante P. Role of physical activity in the occurrence of falls and fall-related injuries in community-dwelling adults over 50 years old. Disabil Rehabil. 2014;36(2):117–24. Epub 2013/04/19. doi: 10.3109/09638288.2013.782355 23594055.

3. Gill DP, Zou GY, Jones GR, Speechley M. Comparison of regression models for the analysis of fall risk factors in older veterans. Ann Epidemiol. 2009;19(8):523–30. Epub 2009/04/28. doi: 10.1016/j.annepidem.2009.03.012 19394862.

4. Zhou H, Peng K, Tiedemann A, Peng J, Sherrington C. Risk factors for falls among older community dwellers in Shenzhen, China. Inj Prev. 2018:injuryprev-2017-042597.

5. Lord SR, Menz HB, Sherrington C. Home environment risk factors for falls in older people and the efficacy of home modifications. Age Ageing. 2006;35 Suppl 2(suppl_2):ii55–ii9. Epub 2006/08/24. doi: 10.1093/ageing/afl088 16926207.

6. Yang NP, Hsu NW, Lin CH, Chen HC, Tsao HM, Lo SS, et al. Relationship between muscle strength and fall episodes among the elderly: the Yilan study, Taiwan. Bmc Geriatrics. 2018;18(1):90. ARTN 90 doi: 10.1186/s12877-018-0779-2 WOS:000430749500001. 29653515

7. Palumbo P, Palmerini L, Bandinelli S, Chiari L. Fall risk assessment tools for elderly living in the community: can we do better? PLoS one. 2015;10(12):e0146247. doi: 10.1371/journal.pone.0146247 26716861

8. Lusardi MM, Fritz S, Middleton A, Allison L, Wingood M, Phillips E, et al. Determining Risk of Falls in Community Dwelling Older Adults: A Systematic Review and Meta-analysis Using Posttest Probability. Journal of Geriatric Physical Therapy. 2017;40(1):1–36. doi: 10.1519/JPT.0000000000000099 WOS:000391316300001. 27537070

9. Klenk J, Becker C, Palumbo P, Schwickert L, Rapp K, Helbostad JL, et al. Conceptualizing a Dynamic Fall Risk Model Including Intrinsic Risks and Exposures. J Am Med Dir Assoc. 2017;18(11):921–7. Epub 2017/09/17. doi: 10.1016/j.jamda.2017.08.001 28916290.

10. Fajen BR, Diaz G, Cramer C. Reconsidering the role of movement in perceiving action-scaled affordances. Hum Mov Sci. 2011;30(3):504–33. Epub 2011/02/22. doi: 10.1016/j.humov.2010.07.016 21333367.

11. Gibson JJ. The theory of affordances, In” Perceiving, Acting and Knowing”, Eds. RE Shaw and J. Bransford. Erlbaum; 1977.

12. Gibson J. The theory of affordances. The Ecological Approach to Visual Perception (pp. 127–143). Boston: Houghton Miffin; 1979.

13. Fajen BR, Riley MA, Turvey MT. Information, affordances, and the control of action in sport. int J Sport Phychol. 2009;40(1):79.

14. Luyat M, Domino D, Noël M. Can overestimating one's own capacities of action lead to fall? A study on the perception of affordance in the elderly. Psychol Neuropsychiatr Vieil. 2008;6(4):287–97. doi: 10.1684/pnv.2008.0149 19087910

15. Noel M, Bernard A, Luyat M. [The overestimation of performance: a specific bias of aging?]. Geriatr Psychol Neuropsychiatr Vieil. 2011;9(3):287–94. Epub 2011/09/08. doi: 10.1684/pnv.2011.0290 21896432.

16. Butler AA, Lord SR, Taylor JL, Fitzpatrick RC. Ability versus hazard: risk-taking and falls in older people. J Gerontol A Biol Sci Med Sci. 2015;70(5):628–34. Epub 2014/11/13. doi: 10.1093/gerona/glu201 25387729.

17. Delbaere K, Close JCT, Brodaty H, Sachdev P, Lord SR. Determinants of disparities between perceived and physiological risk of falling among elderly people: cohort study. Bmj-British Medical Journal. 2010;341:c4165. ARTN c416510.1136/bmj. WOS:000281213400004.

18. Konczak J, Meeuwsen HJ, Cress ME. Changing affordances in stair climbing: the perception of maximum climbability in young and older adults. J Exp Psychol Hum Percept Perform. 1992;18(3):691–7. Epub 1992/08/01. doi: 10.1037//0096-1523.18.3.691 1500869.

19. Ambrose AF, Paul G, Hausdorff JM. Risk factors for falls among older adults: A review of the literature. Maturitas. 2013;75(1):51–61. doi: 10.1016/j.maturitas.2013.02.009 WOS:000318392500008. 23523272

20. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98. doi: 10.1016/0022-3956(75)90026-6 1202204

21. Guerreiro M, Silva AP, Botelho MA, Leitão O, Castro-Caldas A, Garcia C. Adaptação à população portuguesa da tradução do Mini Mental State Examination (MMSE). Rev Port Neurol. 1994;1(9):9–10.

22. Almeida G, Luz C, Martins R, Cordovil R. Do children accurately estimate their performance of fundamental movement skills? JMLD. 2017;5(2):193–206.

23. Lamb SE, Jorstad-Stein EC, Hauer K, Becker C, Prevention of Falls Network E, Outcomes Consensus G. Development of a common outcome data set for fall injury prevention trials: the Prevention of Falls Network Europe consensus. J Am Geriatr Soc. 2005;53(9):1618–22. Epub 2005/09/03. doi: 10.1111/j.1532-5415.2005.53455.x 16137297.

24. Załuska W, Małecka T, Mozul S, Ksiazek A. Whole body versus segmental bioimpedance measurements (BIS) of electrical resistance (Re) and extracellular volume (ECV) for assessment of dry weight in end-stage renal patients treated by hemodialysis. Prz Lek. 2004;61(2):70–3. 15230144

25. Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420–8. Epub 1979/03/01. doi: 10.1037//0033-2909.86.2.420 18839484.

26. de Vet HC, Terwee CB, Ostelo RW, Beckerman H, Knol DL, Bouter LM. Minimal changes in health status questionnaires: distinction between minimally detectable change and minimally important change. Health Qual Life Outcomes. 2006;4(1):54.

27. Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):1–15. Epub 2000/07/25. doi: 10.2165/00007256-200030010-00001 10907753.

28. Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. Journal of Strength and Conditioning Research. 2005;19(1):231–40. doi: 10.1519/15184.1 WOS:000227147800038. 15705040

29. Joseph F, Hair J, Black W, Babin B, Anderson R. Multivariate data analysis: a global perspective (7th (Global Edition) ed.). United States: Prentice Hall; 2010.

30. Pereira C, Fernandes J, Raimundo A, Biehl-Printes C, Marmeleira J, Tomas-Carus P. Increased Physical Activity and Fitness above the 50th Percentile Avoid the Threat of Older Adults Becoming Institutionalized: A Cross-sectional Pilot Study. Rejuvenation Research. 2016;19(1):13–20. doi: 10.1089/rej.2015.1669 WOS:000371387200003. 26083134

31. Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med. 2016;15(2):155–63. Epub 2016/06/23. doi: 10.1016/j.jcm.2016.02.012 27330520; PubMed Central PMCID: PMC4913118.

32. Cesari P, Formenti F, Olivato P. A common perceptual parameter for stair climbing for children, young and old adults. Hum Mov Sci. 2003;22(1):111–24. Epub 2003/03/08. doi: 10.1016/s0167-9457(03)00003-4 12623183.

33. Hernandez D, Rose DJ. Predicting which older adults will or will not fall using the Fullerton Advanced Balance scale. Arch Phys Med Rehab. 2008;89(12):2309–15.

34. Kluft N, Bruijn SM, Weijer RHA, van Dieen JH, Pijnappels M. On the validity and consistency of misjudgment of stepping ability in young and older adults. PLoS One. 2017;12(12):e0190088. Epub 2017/12/22. doi: 10.1371/journal.pone.0190088 29267383; PubMed Central PMCID: PMC5739489.

35. Berg K, Wood-Dauphine S, Williams J, Gayton D. Measuring balance in the elderly: preliminary development of an instrument. Physiother Can. 1989;41(6):304–11.

36. Rose DJ, Lucchese N, Wiersma LD. Development of a multidimensional balance scale for use with functionally independent older adults. Archives of Physical Medicine and Rehabilitation. 2006;87(11):1478–85. doi: 10.1016/j.apmr.2006.07.263 WOS:000242143500010. 17084123

37. Swanenburg J, Nevzati A, Mittaz Hager AG, de Bruin ED, Klipstein A. The maximal width of the base of support (BSW): clinical applicability and reliability of a preferred-standing test for measuring the risk of falling. Arch Gerontol Geriatr. 2013;57(2):204–10. Epub 2013/05/21. doi: 10.1016/j.archger.2013.04.010 23684244.

38. Morais A, Santos S, Lebre P. Psychometric properties of the Portuguese version of the Examen Geronto-Psychomoteur (P-EGP). Educational Gerontology. 2016;42(7):516–27. doi: 10.1080/03601277.2016.1165068 WOS:000379258200007.

39. Rikli RE, Jones CJ. Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. Gerontologist. 2013;53(2):255–67. Epub 2012/05/23. doi: 10.1093/geront/gns071 22613940.

40. Tinetti ME. Performance-oriented assessment of mobility problems in elderly patients. J Am Geriatr Soc. 1986;34(2):119–26. Epub 1986/02/01. doi: 10.1111/j.1532-5415.1986.tb05480.x 3944402.

Článek vyšel v časopise


2019 Číslo 11