Race disparity in blood sphingolipidomics associated with lupus cardiovascular comorbidity

Autoři: Samar M. Hammad aff001;  Jasmyn R. Hardin aff002;  Dulaney A. Wilson aff003;  Waleed O. Twal aff001;  Paul J. Nietert aff003;  James C. Oates aff004
Působiště autorů: Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America aff001;  College of Graduate Studies/Summer Undergraduate Research Program, Medical University of South Carolina, Charleston, South Carolina, United States of America aff002;  Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America aff003;  Department of Medicine, Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America aff004
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224496


Systemic lupus erythematous (SLE) is a chronic multi-organ autoimmune disease. Genetic and environmental factors contribute to disease onset and severity. Sphingolipids are signaling molecules involved in regulating cell functions and have been associated with multiple genetic disease processes. African-Americans are more likely to suffer from SLE morbidity than Whites. The Medical University of South Carolina has banked plasma samples from a well-characterized lupus cohort that includes African-Americans and Whites. This study examined the influence of race on plasma sphingolipid profiles in SLE patients and association of sphingolipid levels with comorbid atherosclerosis and SLE disease activity. Mass spectrometry revealed that healthy African-Americans had higher sphingomyelin levels and lower lactosylcermide levels compared to healthy Whites. SLE patients, irrespective of race, had higher levels of ceramides, and sphingoid bases (sphingosine and dihydrosphingosine) and their phosphates compared to healthy subjects. Compared to African-American controls, African-American SLE patients had higher levels of ceramides, hexosylceramides, sphingosine and dihydrosphingosine 1-phosphate. Compared to White controls, White SLE patients exhibited higher levels of sphingoid bases and their phosphates, but lower ratios of C16:0 ceramide/sphingosine 1-phosphate and C24:1 ceramide/sphingosine 1-phosphate. White SLE patients with atherosclerosis exhibited lower levels of sphingoid bases compared to White SLE patients without atherosclerosis. In contrast, African-American SLE patients with atherosclerosis had higher levels of sphingoid bases and sphingomyelins compared to African-American SLE patients without atherosclerosis. Compared to White SLE patients with atherosclerosis, African-American SLE patients with atherosclerosis had higher levels of select sphingolipids. Plasma levels of sphingosine, C16:0 ceramide/sphingosine 1-phosphate ratio and C24:1 ceramide/sphingosine 1-phosphate ratio significantly correlated with SLEDAI in the African-American but not White SLE patients. The C16:0 ceramide/sphingosine 1-phosphate ratio in SLE patients, and levels of C18:1 and C26:1 lactosylcermides, C20:0 hexosylceramide, and sphingoid bases in SLE patients with atherosclerosis could be dependent on race. Further ethnic studies in SLE cohorts are necessary to verify use of sphingolipidomics as complementary diagnostic tool.

Klíčová slova:

African American people – Blood plasma – Cardiovascular diseases – Cholesterol – Phosphates – Sphingolipids


1. The Lupus Foundation of America. Lupus facts and statistics 2017. Available from: https://resources.lupus.org/entry/facts-and-statistics

2. Proia RL, Hla T. Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. J Clin Invest. 2015; 125:1379–1387. doi: 10.1172/JCI76369 25831442

3. Maceyka M, Spiegel S. Sphingolipid metabolites in inflammatory disease. Nature. 2014; 510:58–67. doi: 10.1038/nature13475 24899305

4. Al Gadban MM, Alwan MM, Smith KJ, Hammad SM. Accelerated vascular disease in systemic lupus erythematosus: Role of macrophage. Clin Immunol. 2015; 157:133–144. doi: 10.1016/j.clim.2015.01.008 25638414

5. McDonald G, Deepak S, Miguel L, Hall CJ, Isenberg DA, Magee AI, et al. Normalizing glycosphingolipids restores function in CD4+ T cells from lupus patients. J Clin Invest. 2014; 124:712–724. doi: 10.1172/JCI69571 24463447

6. Nowling TK, Mather AR, Thiyagarajan T, Hernandez-Corbacho MJ, Powers TW, Jones EE, et al. Renal glycosphingolipid metabolism is dysfunctional in lupus nephritis. J Am Soc Nephrol. 2015; 26:1402–1413. doi: 10.1681/ASN.2014050508 25270066

7. Liu F, Li X, Yue H, Ji J, You M, Ding L, et al. TLR-Induced SMPD3 Defects Enhance Inflammatory Response of B Cell and Macrophage in the Pathogenesis of SLE. Scand J Immunol. 2017; 86:377–388. doi: 10.1111/sji.12611 28889482

8. Al Gadban MM, German J, Truman JP, Soodavar F, Riemer EC, Twal WO, et al. Lack of nitric oxide synthases increases lipoprotein immune complex deposition in the aorta and elevates plasma sphingolipid levels in lupus. Cell Immunol. 2012; 276:42–51. doi: 10.1016/j.cellimm.2012.03.007 22560558

9. Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008; 9:139–150 doi: 10.1038/nrm2329 18216770

10. Hammad SM. Blood Sphingolipids in Homeostasis and Pathobiology. Adv Exp Med Biol. 2011; 721:57–66. doi: 10.1007/978-1-4614-0650-1_4 21910082

11. Hannun YA, Obeid LM. Many Ceramides. J Biol Chem. 2011; 286:27855–27862. doi: 10.1074/jbc.R111.254359 21693702

12. Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature. 2004; 427:355–360. doi: 10.1038/nature02284 14737169

13. Deutschman DH, Carstens JS, Klepper RL, Smith WS, Page MT, Young TR, et al. Predicting obstructive coronary artery disease with serum sphingosine-1-phosphate. Am Heart J. 2003; 146:62–68. doi: 10.1016/S0002-8703(03)00118-2 12851609

14. Pyne NJ, Pyne S. Sphingosine 1-phosphate and cancer. Nat Rev Cancer. 2010; 10:489–503. doi: 10.1038/nrc2875 20555359

15. Sherer Y, Shoenfeld Y. Mechanisms of disease: atherosclerosis in autoimmune diseases. Nat Clin Pract Rheumatol. 2006; 2:99–106. doi: 10.1038/ncprheum0092 16932663

16. Skaggs BJ, Hahn BH, McMahon M. Accelerated atherosclerosis in patients with SLE—mechanisms and management. Nat Rev Rheumatol. 2012; 8:214–223. doi: 10.1038/nrrheum.2012.14 22331061

17. Bentley AR, Rotimi CN. Interethnic Differences in Serum Lipids and Implications for Cardiometabolic Disease Risk in African Ancestry Populations. Glob Heart. 2017; 12:141–150. doi: 10.1016/j.gheart.2017.01.011 28528248

18. Jiang XC, Paultre F, Pearson TA, Reed RG, Francis CK, Lin M, et al. Plasma sphingomyelin level as a risk factor for coronary artery disease. Arterioscler Thromb Vasc Biol. 2000; 20:2614–2618. doi: 10.1161/01.atv.20.12.2614 11116061

19. Nelson JC, Jiang XC, Tabas I, Tall A, Shea S. Plasma sphingomyelin and subclinical atherosclerosis: findings from the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2006; 163:903–912. doi: 10.1093/aje/kwj140 16611667

20. Checa A, Idborg H, Zandian A, Sar DG, Surowiec I, Trygg J, et al. Dysregulations in circulating sphingolipids associate with disease activity indices in female patients with systemic lupus erythematosus: a cross-sectional study. Lupus. 2017; 26:1023–1033. doi: 10.1177/0961203316686707 28134039

21. Karlson EW, Sanchez-Guerrero J, Wright EA, Lew RA, Daltroy LH, Katz JN, et al. A connective tissue disease screening questionnaire for population studies. Ann Epidemiol. 1995; 5:297–302. doi: 10.1016/1047-2797(94)00096-c 8520712

22. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982; 25:1271–1277. doi: 10.1002/art.1780251101 7138600

23. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997; 40:1725.

24. Mikdashi J, Nived O. Measuring disease activity in adults with systemic lupus erythematosus: the challenges of administrative burden and responsiveness to patient concerns in clinical research. Arthritis Res Ther. 2015; 17:183. doi: 10.1186/s13075-015-0702-6 26189728

25. Hammad SM, Pierce JS, Soodavar F, Smith KJ, Al Gadban MM, Rembiesa B, et al. Blood sphingolipidomics in healthy humans: impact of sample collection methodology. J Lipid Res. 2010; 51:3074–3087. doi: 10.1194/jlr.D008532 20660127

26. Hammad SM, Al Gadban MM, Semler AJ, Klein RL. Sphingosine 1-Phosphate Distribution in Human Plasma: Associations with Lipid Profiles. J Lipids. 2012; 2012:180705. doi: 10.1155/2012/180705 23209911

27. Hammad SM, Truman JP, Al Gadban MM, Smith KJ, Twal WO, Hamner MB. Altered blood sphingolipidomics and elevated plasma inflammatory cytokines in combat veterans with post-traumatic stress disorder. Neurobiol Lipids. 2012; 10:2. 24403911

28. Klein RL, Hammad SM, Baker NL, Hunt KJ, Al Gadban MM, Cleary PA, et al. Decreased plasma levels of select very long chain ceramide species are associated with the development of nephropathy in type 1 diabetes. Metabolism. 2014; 63:1287–1295. doi: 10.1016/j.metabol.2014.07.001 25088746

29. Lopes-Virella MF, Baker NL, Hunt KJ, Hammad SM, Arthur J, Virella G, et al. Glycosylated sphingolipids and progression to kidney dysfunction in type 1 diabetes. J Clin Lipidol. 2019; 13:481–491. doi: 10.1016/j.jacl.2019.03.005 31043336

30. Buie JNJ, Hammad SM, Nietert PJ, Magwood G, Adams RJ, Bonilha L, et al. Differences in plasma levels of long chain and very long chain ceramides between African Americans and whites: An observational study. PLoS One. 2019; 14(5):e0216213. doi: 10.1371/journal.pone.0216213 31067249

31. Lu L, Hu C, Zhao Y, He L, Zhou J, Li H, et al. Shotgun Lipidomics Revealed Altered Profiles of Serum Lipids in Systemic Lupus Erythematosus Closely Associated with Disease Activity. Biomolecules. 2018; 8(4):105

32. Meikle PJ, Summers SA. Sphingolipids and phospholipids in insulin resistance and related metabolic disorders. Nat Rev Endocrinol. 2017; 13:79–91. doi: 10.1038/nrendo.2016.169 27767036

33. Borodzicz S, Czarzasta K, Kuch M, Cudnoch-Jedrzejewska A. Sphingolipids in cardiovascular diseases and metabolic disorders. Lipids Health Dis. 2015; 14:55. doi: 10.1186/s12944-015-0053-y 26076974

34. Patyna S, Büttner S, Eckes T, Obermüller N, Bartel C, Braner A, et al. Blood ceramides as novel markers for renal impairment in systemic lupus erythematosus. Prostaglandins Other Lipid Mediat. 2019; Forthcoming. doi: 10.1016/j.prostaglandins.2019.106348 31301404

35. Brinkmann V, Billich A, Baumruker T, Heining P, Schmouder R, Francis G, et al. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov. 2010; 9:883–897. doi: 10.1038/nrd3248 21031003

36. Vaclavkova A, Chimenti S, Arenberger P, Holló P, Sator P-G, Burcklen M, et al. Oral ponesimod in patients with chronic plaque psoriasis: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet. 2014; 384:2036–2045. doi: 10.1016/S0140-6736(14)60803-5 25127208

37. Summers SA. Could Ceramides Become the New Cholesterol? Cell Metab. 2018; 27:276–280 doi: 10.1016/j.cmet.2017.12.003 29307517

38. Matanes F, Twal WO, Hammad SM. Sphingolipids as Biomarkers of Disease. Adv Exp Med Biol. 2019; 1159:109–138. doi: 10.1007/978-3-030-21162-2_7 31502202

Článek vyšel v časopise


2019 Číslo 11