Minimal effects of oyster aquaculture on local water quality: Examples from southern Chesapeake Bay


Autoři: Jessica S. Turner aff001;  M. Lisa Kellogg aff001;  Grace M. Massey aff001;  Carl T. Friedrichs aff001
Působiště autorů: Virginia Institute of Marine Science, William & Mary, Virginia, United States of America aff001
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224768

Souhrn

As the oyster aquaculture industry grows and becomes incorporated into management practices, it is important to understand its effects on local environments. This study investigated how water quality and hydrodynamics varied among farms as well as inside versus outside the extent of caged grow-out areas located in southern Chesapeake Bay. Current speed and water quality variables (chlorophyll-a fluorescence, turbidity, and dissolved oxygen) were measured along multiple transects within and adjacent to four oyster farms during two seasons. At the scale of individual aquaculture sites, we were able to detect statistically significant differences in current speed and water quality variables between the areas inside and outside the farms. However, the magnitudes of the water quality differences were minor. Differences between sites and between seasons for water quality variables were typically an order of magnitude greater than those observed within each site (i.e. inside and outside the farm footprint). The relatively small effect of the presence of oysters on water quality is likely attributable to a combination of high background variability, relatively high flushing rates, relatively low oyster density, and small farm footprints. Minimal impacts overall suggest that low-density oyster farms located in adequately-flushed areas are unlikely to negatively impact local water quality.

Klíčová slova:

Aquaculture – Chlorophyll – Oyster farming – Oysters – Sediment – Turbidity – Water columns – Water quality


Zdroje

1. Gentry RR, Froehlich HE, Grimm D, Kareiva P, Parke M, Rust M, et al. Mapping the global potential for marine aquaculture. Nat Ecol Evol. 2017;1: 1317–1324. doi: 10.1038/s41559-017-0257-9 29046547

2. Hilborn R, Banobi J, Hall SJ, Pucylowski T, Walsworth TE. The environmental cost of animal source foods. Front Ecol Environ. 2018;16: 329–335. doi: 10.1002/fee.1822

3. National Marine Fisheries Service (NMFS). Fisheries of the United States, 2017. In: U.S. Department of Commerce, National Oceanic and Atmospheric Administration (NOAA) Current Fishery Statistics [Internet]. 2018. Available: https://www.fisheries.noaa.gov/national/fisheries-united-states-2017

4. Hudson K. Virginia Shellfish Aquaculture Situation and Outlook Report. Results of the 2017 Virginia Shellfish Aquaculture Crop Reporting Survey. VIMS Marine Resources Report No 2018–9 Virginia Sea Grant VSG-18-3. 2018. Available: www.vims.edu/map/aquaculture

5. Beck MW, Brumbaugh RD, Airoldi L, Carranza A, Coen LD, Crawford C, et al. Oyster reefs at risk and recommendations for conservation, restoration, and management. Bioscience. 2011;61: 107–116. doi: 10.1525/bio.2011.61.2.5

6. Wilberg MJ, Livings ME, Barkman JS, Morris BT, Robinson JM. Overfishing, disease, habitat loss, and potential extirpation of oysters in upper Chesapeake Bay. Mar Ecol Prog Ser. 2011;436: 131–144. doi: 10.3354/meps09161

7. Mann R, Powell EN. Why oyster restoration goals in the Chesapeake Bay are not and probably cannot be achieved. J Shellfish Res. 2007;26: 905–917.

8. Hernández AB, Brumbaugh RD, Frederick P, Grizzle R, Luckenbach MW, Peterson CH, et al. Restoring the eastern oyster: how much progress has been made in 53 years? Front Ecol Environ. 2018;16: 463–471. doi: 10.1002/fee.1935

9. Coen LD, Brumbaugh RD, Bushek D, Grizzle R, Luckenbach MW, Posey MH, et al. Ecosystem services related to oyster restoration. Mar Ecol Prog Ser. 2007;341: 303–307. doi: 10.3354/meps341303

10. Smedinghoff J. Bay Program partners approve oyster aquaculture as best management practice. In: Chesapeake Bay Program News [Internet]. 2017. Available: https://www.chesapeakebay.net/news/blog/bay_program_partners_approve_oyster_aquaculture_as_best_management_practice

11. Bayne BL, Newell R. Physiological Energetics of Marine Molluscs. In: Saleuddin A, Wilbur K, editors. The Mollusca, Vol 4 Physiology, Part 1. New York, NY: Academic Press, Inc.; 1983.

12. Newell RIE, Langdon CJ. Mechanisms and physiology of larval and adult feeding. In: Kennedy V, Newell R, Eble A, editors. The Eastern Oyster Crassostrea virginica. Maryland Sea Grant, College Park, MD; 1996. pp. 185–229.

13. Ward JE, Shumway SE. Separating the grain from the chaff: particle selection in suspension- and deposit-feeding bivalves. J Exp Mar Bio Ecol. 2004;300: 83–130. doi: 10.1016/j.jembe.2004.03.002

14. Riisgard HU. Efficiency of particle retention and filtration rate in 6 species of Northeast American bivalves. Mar Ecol Prog Ser. 1988;45: 217–223. doi: 10.3354/meps045217

15. Haven DS, Morales-Alamo R. Aspects of biodeposition by oysters and other invertebrate filter feeders. Limnol Oceanogr. 1966;11: 487–498. doi: 10.4319/lo.1966.11.4.0487

16. Haven DS, Morales-Alamo R. Filtration of particles from suspension by the American Oyster Crassotrea virginica. Biol Bull. 1970;139: 248–264. doi: 10.2307/1540081 29332461

17. Holyoke RR. Biodeposition and Biogeochemical Processes in Shallow, Mesohaline Sediments of Chesapeake Bay. PhD Disseration. University of Maryland. 2008.

18. Newell RIE, Jordan SJ. Preferential ingestion of organic material by the American oyster Crassostrea virginica. Mar Ecol Prog Ser. 1983;13: 47–53.

19. Ribelin BW, Collier A. Studies on the gill ciliation of the American oyster Crassostrea virginica (Gmelin). J Morphol. 1977;151: 439–449. doi: 10.1002/jmor.1051510308 30249076

20. Palmer RE, Williams LG. Effect of particle concentration on filtration efficiency of the bay scallop Argopecten irradians and the oyster Crassostrea virginica. Ophelia. 1980;19: 163–174. doi: 10.1080/00785326.1980.10425514

21. Cerco CF, Noel MR. Can oyster restoration reverse cultural eutrophication in Chesapeake Bay? Estuar Coast. 2007;30: 331–343. doi: 10.1007/BF02700175

22. North EW, King DM, Xu J, Hood RR, Newell RIE, Paynter K, et al. Linking optimization and ecological models in a decision support tool for oyster restoration and management. Ecol Appl. 2010;20: 851–866. doi: 10.1890/08-1733.1 20437969

23. Burkholder JM, Shumway SE. Bivalve Shellfish Aquaculture and Eutrophication. In: Shumway SE, editor. Shellfish Aquaculture and the Environment. John Wiley & Sons, Inc.; 2011. pp. 155–215. doi: 10.1002/9780470960967.ch7

24. Ray NE, Li J, Kangas PC, Terlizzi DE. Water quality upstream and downstream of a commercial oyster aquaculture facility in Chesapeake Bay, USA. Aquac Eng. 2015;68: 35–42. doi: 10.1016/j.aquaeng.2015.08.001

25. Pietros JM, Rice MA. The impacts of aquacultured oysters, Crassostrea virginica (Gmelin, 1791) on water column nitrogen and sedimentation: results of a mesocosm study. Aquaculture. 2003;220: 407–422. doi: 10.1016/S0044-8486(02)00574-4

26. Newell RIE, Cornwell JC, Owens MS. Influence of simulated bivalve biodeposition and microphytobenthos on sediment nitrogen dynamics: A laboratory study. Limnol Oceanogr. 2002;47: 1367–1379. doi: 10.4319/lo.2002.47.5.1367

27. Dame RF, Spurrier JD, Zingmark RG. In situ metabolism of an oyster reef. J Exp Mar Bio Ecol. 1992;164: 147–159. doi: 10.1016/0022-0981(92)90171-6

28. Boucher G, Boucher-Rodoni R. In situ measurement of respiratory metabolism and nitrogen fluxes at the interface of oyster beds. Mar Ecol Prog Ser. 1988;44: 229–238. doi: 10.3354/meps044229

29. Cranford PJ, Hargrave BT, Doucette LI. Benthic organic enrichment from suspended mussel (Mytilus edulis) culture in Prince Edward Island, Canada. Aquaculture. 2009;292: 189–196. doi: 10.1016/j.aquaculture.2009.04.039

30. Ito S, Imai T. Ecology of oyster bed I. On the decline of productivity due to repeated cultures. Tohoku J Agric Res. 1955;5: 251–268.

31. Kusuki Y. Fundamental studies on the deterioration of oyster growing grounds. Bull Hiroshima Fish Exp Stn. 1981;11: 1–93.

32. Hayakawa Y, Kobayashi M, Izawa M. Sedimentation flux from mariculture of oyster (Crassostrea gigas) in Ofunato estuary, Japan. ICES J Mar Sci. 2001;58: 435–444.

33. Tenore KR, Boyer LF, Cal-Rodríguez RM, Corral-Estrada J, García-Fernández C, González-García-Estrada N, et al. Coastal upwelling in the Rías Bajas, NW Spain: Contrasting the benthic regimes of Rías de Arosa and de Muros. J Mar Res. 1982;40: 701–772.

34. Castel J, Labourg PJ, Escaravage V, Auby I, Garcia ME. Influence of seagrass beds and oyster parks on the abundance and biomass patterns of meio- and macrobenthos in tidal flats. Estuar Coast Shelf Sci. 1989;28: 71–85. doi: 10.1016/0272-7714(89)90042-5

35. Dahlbäck B, Gunnarsson LÅH. Sedimentation and sulfate reduction under a mussel culture. Mar Biol. 1981;63: 269–275.

36. Kaiser MJ. Ecological effects of shellfish cultivation. In: Black KD, editor. Environmental Impacts of Aquaculture. Sheffield Academic Press; 2001. pp. 51–75.

37. Grant J, Bacher C. A numerical model of flow modification induced by suspended aquaculture in a Chinese bay. Can J Fish Aquat Sci. 2001;58: 1003–1011. doi: 10.1139/cjfas-58-5-1003

38. Pilditch CA, Grant J, Bryan KR. Seston supply to sea scallops Placopecten magellanicus in suspended culture. Can J Fish Aquat Sci. 2001;58: 241–253. doi: 10.1139/cjfas-58-2-241

39. Gibbs MM, James MR, Pickmere SE, Woods PH, Shakespeare BS, Hickman RW, et al. Hydrodynamic and water column properties at six stations associated with mussel farming in pelorus sound, 1984–85. New Zeal J Mar Freshw Res. 1991;25: 239–254. doi: 10.1080/00288330.1991.9516476

40. Plew DR. Shellfish farm-induced changes to tidal circulation in an embayment, and implications for seston depletion. Aquac Environ Interact. 2011;1: 201–214. doi: 10.3354/aei00020

41. Grant J, Stenton-Dozey J, Monteiro P, Pitcher G, Heasman K. Shellfish culture in the Benguela system: A carbon budget of Saldanha Bay for raft culture of Mytilus galloprovincialis. J Shellfish Res. 1998;17: 41–49.

42. Boyd AJ, Heasman KG. Shellfish mariculture in the Benguela system: water flow patterns within a mussel farm in Saldanha Bay, South Africa. J Shellfish Res. 1998;17: 25–32.

43. Virnstein RW. Predator caging experiments in soft sediments: caution advised. In: Wiley ML, editor. Estuarine Interactions. Academic Press, Inc.; 1978. pp. 261–273.

44. Coen LD, Judge M, Moncreiff C, Hammerstrom K. Hard clam (Mercenaria mercenaria) mariculture in US waters: evaluating the effects of large-scale field growout practices on clam growth, nutrition and inshore estuarine creek communities. Final Project Report to Saltonstall-Kennedy, NMFS. 2000;38.

45. Forrest BM, Keeley NB, Hopkins GA, Webb SC, Clement DM. Bivalve aquaculture in estuaries: Review and synthesis of oyster cultivation effects. Aquaculture. 2009;298: 1–15. doi: 10.1016/j.aquaculture.2009.09.032

46. Crawford CM, Macleod CKA, Mitchell IM. Effects of shellfish farming on the benthic environment. Aquaculture. 2003;224: 117–140. doi: 10.1016/S0044-8486(03)00210-2

47. CBP. Chesapeake Bay watershed population. Chesapeake Bay Program. 2019. Available: http://www.chesapeakebay.net/indicators/indicator/chesapeake_bay_watershed_population

48. Kemp WM, Boynton WR, Adolf JE, Boesch DF, Boicourt WC, Brush G, et al. Eutrophication of Chesapeake Bay: Historical trends and ecological interactions. Mar Ecol Prog Ser. 2005;303: 1–29. doi: 10.3354/meps303001

49. Testa JM, Brady DC, Cornwell JC, Owens MS, Sanford LP, Newell CR, et al. Modeling the impact of floating oyster (Crassostrea virginica) aquaculture on sediment-water nutrient and oxygen fluxes. Aquac Environ Interact. 2015;7: 205–222. doi: 10.3354/aei00151

50. Grant J, Filgueira R. The application of dynamic modeling to prediction of production carrying capacity in shellfish farming. In: Shumway SE, editor. Shellfish Aquaculture and the Environment. Wiley-Blackwell; 2011. pp. 135–154.

51. Duarte P, Labarta U, Fernández-Reiriz MJ. Modelling local food depletion effects in mussel rafts of Galician Rias. Aquaculture. 2008;274: 300–312. doi: 10.1016/j.aquaculture.2007.11.025

52. Ferreira JG, Hawkins AJS, Bricker SB. Management of productivity, environmental effects and profitability of shellfish aquaculture—the Farm Aquaculture Resource Management (FARM) model. Aquaculture. 2007;264: 160–174. doi: 10.1016/j.aquaculture.2006.12.017

53. Porter ET, Franz H, Lacouture R. Impact of eastern oyster Crassostrea virginica biodeposit resuspension on the seston, nutrient, phytoplankton, and zooplankton dynamics: A mesocosm experiment. Mar Ecol Prog Ser. 2018;586: 21–40. doi: 10.3354/meps12417

54. Turner JS, Massey GM, Kellogg ML, Friedrichs CT. A Data Repository for Minimal Effects of Oyster Aquaculture on Water Quality: Examples from Southern Chesapeake Bay. In: W&M ScholarWorks [Internet]. 2019. Available: https://doi.org/10.25773/wwva-tz18

55. Zieba A, Ramza P. Standard deviation of the mean of autocorrelated observations estimated with the use of the autocorrelation function estimated from the data. Metrol Meas Syst. 2011;XVIII: 529–542. doi: 10.1017/cbo9780511921247.018

56. Ehrich MK, Harris LA. A review of existing eastern oyster filtration rate models. Ecol Modell. 2015;297: 201–212.

57. Kellogg ML, Turner JS, Dreyer J, Massey G. Environmental and ecological benefits and impacts of oyster aquaculture. A report to The Nature Conservancy. Virginia Institute of Marine Science, William & Mary. 2018. doi: 10.25773/hdb1-xf91

58. Kellogg ML, Turner JS, Dreyer J, Friedrichs CT. Environmental and ecological benefits and impacts of oyster aquaculture: Addendum. Supplement to the report to The Nature Conservancy. Virginia Institute of Marine Science, William & Mary. 2018. doi: 10.25773/r01b-tg44

59. Mallet AL, Carver CE, Landry T. Impact of suspended and off-bottom eastern oyster culture on the benthic environment in eastern Canada. Aquaculture. 2006;255: 362–373. doi: 10.1016/j.aquaculture.2005.11.054

60. Comeau LA. Suspended versus bottom oyster culture in eastern Canada: Comparing stocking densities and clearance rates. Aquaculture. 2013;410–411: 57–65. doi: 10.1016/j.aquaculture.2013.06.017

61. Grant J, Hatcher A, Scott DB, Pocklington P, Schafer CT, Winters G V. A multidisciplinary approach to evaluatingimpacts of shellfish aquaculture on benthic communities. Estuaries. 1995;18: 124. doi: 10.2307/1352288

62. Thorn AJ. Alterations in the structure of macrobenthic communities related to the culture of oysters (Crassostrea gigas). University of Tasmania. 1997.

63. Baudinet D, Alliot E, Berland B, Grenz C, Plante-Cuny M-R, Plante R, et al. Incidence of mussel culture on biogeochemical fluxes at the sediment-water interface. Hydrobiologia. 1990;207: 187–196. doi: 10.1007/BF00041456

64. Fabi G, Manoukian S, Spagnolo A. Impact of an open-sea suspended mussel culture on macrobenthic community (Western Adriatic Sea). Aquaculture. 2009;289: 54–63. doi: 10.1016/j.aquaculture.2008.12.026

65. Crawford C. Environmental management of marine aquaculture in Tasmania, Australia. Aquaculture. 2003;226: 129–138. https://doi.org/10.1016/S0044-8486(03)00473-3

66. Fan X, Wei H, Yuan Y, Zhao L. Vertical structure of tidal current in a typically coastal raft-culture area. Cont Shelf Res. 2009;29: 2345–2357. doi: 10.1016/j.csr.2009.10.007

67. Nielsen P, Cranford PJ, Maar M, Petersen JK. Magnitude, spatial scale and optimization of ecosystem services from a nutrient extraction mussel farm in the eutrophic Skive Fjord, Denmark. Aquac Environ Interact. 2016;8: 312–329. doi: 10.3354/aei00175

68. Clausen I, Riisgård HU. Growth, filtration and respiration in the mussel Mytilus edulis: No evidence for physiological regulation of the filter-pump to nutritional needs. Mar Ecol Prog Ser. 1996;141: 37–45. doi: 10.3354/meps141037


Článek vyšel v časopise

PLOS One


2019 Číslo 11