Anterior tooth-use behaviors among early modern humans and Neandertals


Autoři: Kristin L. Krueger aff001;  John C. Willman aff002;  Gregory J. Matthews aff004;  Jean-Jacques Hublin aff005;  Alejandro Pérez-Pérez aff006
Působiště autorů: Department of Anthropology, Loyola University Chicago, Chicago, Illinois, United States of America aff001;  Institut Català de Paleoecologia Humana i Evolució Social (IPHES), Tarragona, Spain aff002;  Àrea de Prehistòria, Universitat Rovira i Virgili (URV), Tarragona, Spain aff003;  Department of Mathematics and Statistics, Loyola University Chicago, Chicago, Illinois, United States of America aff004;  Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany aff005;  Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Barcelona, Spain aff006
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224573

Souhrn

Early modern humans (EMH) are often touted as behaviorally advanced to Neandertals, with more sophisticated technologies, expanded resource exploitation, and more complex clothing production. However, recent analyses have indicated that Neandertals were more nuanced in their behavioral adaptations, with the production of the Châtelperronian technocomplex, the processing and cooking of plant foods, and differences in behavioral adaptations according to habitat. This study adds to this debate by addressing the behavioral strategies of EMH (n = 30) within the context of non-dietary anterior tooth-use behaviors to glean possible differences between them and their Neandertal (n = 45) counterparts. High-resolution casts of permanent anterior teeth were used to collect microwear textures of fossil and comparative bioarchaeological samples using a Sensofar white-light confocal profiler with a 100x objective lens. Labial surfaces were scanned, totaling a work envelope of 204 x 276 μm for each individual. The microwear textures were examined for post-mortem damage and uploaded to SSFA software packages for surface characterization. Statistical analyses were performed to examine differences in central tendencies and distributions of anisotropy and textural fill volume variables among the EMH sample itself by habitat, location, and time interval, and between the EMH and Neandertal samples by habitat and location. Descriptive statistics for the EMH sample were compared to seven bioarchaeological samples (n = 156) that utilized different tooth-use behaviors to better elucidate specific activities that may have been performed by EMH. Results show no significant differences between the means within the EMH sample by habitat, location, or time interval. Furthermore, there are no significant differences found here between EMH and Neandertals. Comparisons to the bioarchaeological samples suggest both fossil groups participated in clamping and grasping activities. These results indicate that EMH and Neandertals were similar in their non-dietary anterior tooth-use behaviors and provide additional evidence for overlapping behavioral strategies employed by these two hominins.

Klíčová slova:

Anisotropy – Behavior – Collective animal behavior – Dentition – Hominins – Paleoanthropology – Neanderthals – Archaeobiology


Zdroje

1. Mellars P. The Neanderthal problem continued. Curr Anthropol. 1999; 40(3): 341–364. doi: 10.1086/200024

2. Bar-Yosef O. The Upper Paleolithic Revolution. Ann Rev Anthropol. 2002; 31(1): 363–393. doi: 10.1146/annurev.anthro.31.040402.085416

3. Kuhn SL and Stiner MC. What's a mother to do? The division of labor among Neandertals and modern humans in Eurasia. Curr Anthropol. 2006; 47(6): 953–981. doi: 10.1086/507197

4. Zilhão J. The emergence of ornaments and art: an archaeological perspective on the origins of “behavioral modernity”. J Archaeol Res. 2007; 15(1):1–54. doi: 10.1007/s10814-006-9008-1

5. Shea JJ and Sisk ML. Complex projectile technology and Homo sapiens dispersal into Western Eurasia. PaleoAnthropol. 2010: 100–122. doi: 10.4207/PA.2010.ART36

6. Lowe J, Barton N, Blockley S, Ramsey CB, Cullen VL, Davies W., et al. Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards. Proc Natl Acad Sci USA. 2012; 109(34): 13532–13537. doi: 10.1073/pnas.1204579109 22826222

7. Villa P and Roebroeks W. Neandertal demise: an archaeological analysis of the modern human superiority complex. PLoS One. 2014; 9(4): e96424. doi: 10.1371/journal.pone.0096424 24789039

8. Marean CW. An evolutionary anthropological perspective on modern human origins. Annu Rev Anthropol. 2015; 44(1): 533–556. doi: 10.1146/annurev-anthro-102313-025954

9. Roebroeks W and Soressi M. Neandertals revised. Proc Natl Acad Sci USA. 2016; 113(23): 6372–6379. doi: 10.1073/pnas.1521269113 27274044

10. Shea JJ. The origins of lithic projectile point technology: evidence from Africa, the Levant, and Europe. J Archaeol Sci. 2006; 33(6): 823–846. doi: 10.1016/j.jas.2005.10.015

11. El Zaatari S, Grine FE, Ungar PS, Hublin J-J. Neandertal versus modern human dietary responses to climatic fluctuations. PLoS One. 2016; 11(4): e0153277. doi: 10.1371/journal.pone.0153277 27119336

12. Richards MP and Trinkaus E. Isotopic evidence for the diets of European Neanderthals and early modern humans. Proc Natl Acad Sci USA. 2009; 106(38): 16034–16039. doi: 10.1073/pnas.0903821106 19706482

13. Hu YW, Shang H, Tong HW, Nehlich O, Liu W, Zhao CH, et al. Stable isotope dietary analysis of the Tianyuan 1 early modern human. Proc Natl Acad Sci USA. 2009; 106(27): 10971–10974. doi: 10.1073/pnas.0904826106 19581579

14. Aranguren B, Becattini R, Lippi MM, and Revedin A. Grinding flour in Upper Palaeolithic Europe (25,000 years BP). Antiquity. 2007; 81(314): 845–855. doi: 10.1017/S0003598X00095946

15. Revedin A, Aranguren B, Becattini R, Longo L, Marconi E, Lippi MM et al. Thirty thousand-year-old evidence of plant food processing. Proc Natl Acad Sci USA. 2010; 107(44): 18815–18819. doi: 10.1073/pnas.1006993107 20956317

16. Lippi MM, Foggi B, Aranguren B, Ronchitelli A, and Revedin A. Multistep food plant processing at Grotta Paglicci (Southern Italy) around 32,600 cal B.P. Proc Natl Acad Sci USA. 2015; 112(39): 12075–12080. doi: 10.1073/pnas.1505213112 26351674

17. Revedin A, Longo L, Lippi MM, Marconi E, Ronchitelli A, Svoboda J, et al. New technologies for plant food processing in the Gravettian. Quat Int. 2015; 359–360(2): 77–88. doi: 10.1016/j.quaint.2014.09.066

18. Marean CW and Assefa Z. Zooarcheological evidence for the faunal exploitation behavior of Neandertals and early modern humans. Evol Anthropol. 1999; 8(1): 22–37. doi: 10.1002/(SICI)1520-6505(1999)8:1<22::AID-EVAN7>3.0.CO;2-F

19. Stiner MC, Munro ND, and Surovell TA. The tortoise and the hare: small-game use, the broad-spectrum revolution, and Paleolithic demography. Curr Anthropol. 2000; 41(1): 39–79. doi: 10.2307/3596428 10593724

20. Power RC and Williams FL. Evidence of increasing intensity of food processing during the Upper Paleolithic of Western Eurasia. J Paleolit Archaeol. 2018; 1(4): 281–301. doi: 10.1007/s41982-018-0014-x

21. Gilligan I. Neanderthal extinction and modern human behavior: The role of climate change and clothing. World Archaeol. 2007; 39(4): 499–514. doi: 10.1080/00438240701680492

22. Wales N. Modeling Neanderthal clothing using ethnographic analogues. J Hum Evol. 2012; 63(6): 781–795. doi: 10.1016/j.jhevol.2012.08.006 23084621

23. Collard M, Tarle L, Sandgathe D, Allan A. 2016. Faunal evidence for a difference in clothing use between Neanderthals and early modern humans in Europe. J Anthropol Archaeol. 2016; 44(Part B): 235–246. doi: 10.1016/j.jaa.2016.07.010

24. Ruebens K, McPherron SJP, Hublin J-J. On the local Mousterian origin of the Châtelperronian: Integrating typo-technological, chronostrateigraphic and contextual data. J Hum Evol. 2015; 86: 55–91. doi: 10.1016/j.jhevol.2015.06.011 26277304

25. Hublin J-J, Talamo S, Julien M, David F, Connet N, Bodu P, et al. Radiocarbon dates from the Grotte du Renne and Saint-Césaire support a Neandertal origin for the Châtelperronian. Proc Nalt Acad Sci USA. 2012; 109(46): 18743–18748. doi: 10.1073/pnas.1212924109 23112183

26. Zilhão J, d’Errico F, Bordes J-G, Lenoble A, Texler J-P, Rigaud J-P. Analysis of Aurignacian interstratification at the Châtelperronian-type site and implications for the behavioral modernity of Neandertals. Proc Natl Acad Sci USA. 2006; 103(33): 12643–12648. doi: 10.1073/pnas.0605128103 16894152

27. Welker F, Hajdinjak M, Talamo S, Jaouen K, Dannemann M, David F, et al. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne. Proc Natl Acad Sci USA. 2016; 113(40): 11162–11167. doi: 10.1073/pnas.1605834113 27638212

28. Villa P and Soriano S. Hunting weapons of Neanderthals and early modern humans in South Africa: similarities and differences. J Anthropol Res. 2010; 66(1):5–38. doi: 10.3998/jar.0521004.0066.102

29. Hardy BL, Moncel M-H, Daujeard C, Fernandes P, Béarez P, Desclaux E, et al. Impossible Neanderthals? Making string, throwing projectiles and catching small game during Marine Isotope Stage 4 (Abri du Maras, France). Quat Sci Rev. 2013; 82(15): 23–40. doi: 10.1016/j.quascirev.2013.09.028

30. Henry AG, Brooks AS, Piperno DR. Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Proc Natl Acad Sci USA. 2011; 108(2): 486–491. doi: 10.1073/pnas.1016868108 21187393

31. Hardy K, Buckley S, Collins MJ, Estalrrich A, Brothwell D, Copeland L, et al. Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwiss. 2012; 99(8): 617–626. doi: 10.1007/s00114-012-0942-0 22806252

32. Radini A, Buckley S, Rosas A, Estalrrich A, de la Rasilla M, and Hardy K. Neanderthals, trees and dental calculus: new evidence from El Sidrón. Antiquity. 2016; 90(350): 290–301. doi: 10.15184/aqy.2016.21

33. Weyrich LS, Duchene S, Soubrier J, Arriola L, Llamas B, Breen J, et al. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature. 2017; 544(7650): 357–361. doi: 10.1038/nature21674 28273061

34. Hardy BL. Climatic variability and plant food distribution in Pleistocene Europe: implications for Neanderthal diet and subsistence. Quat Sci Rev. 2010; 29(5–6): 662–679. doi: 10.1016/j.quascirev.2009.11.016

35. Hardy BL and Moncel M-H. Neanderthal use of fish, mammals, birds, starchy plants and wood 125–250,000 years ago. PLoS One. 2011; 6(8): e23768. doi: 10.1371/journal.pone.0023768 21887315

36. Henry AG, Brooks AS, Piperno DR. Plant foods and the dietary ecology of Neanderthals and early modern humans. J Hum Evol. 2014; 69: 44–54. doi: 10.1016/j.jhevol.2013.12.014 24612646

37. Krueger KL, Ungar PS, Guatelli-Steinberg D, Hublin J-J, Pérez-Pérez A, Trinkaus E, and Willman JC. 2017. Anterior dental microwear textures show habitat-driven variability in Neandertal behavior. J Hum Evol 2017; 105: 13–23. doi: 10.1016/j.jhevol.2017.01.004 28366197

38. Fiorenza L and Kullmer O. Dental wear and cultural behavior in Middle Paleolithic humans from the Near East. Am J Phys Anthropol. 2013; 152(1): 107–117. doi: 10.1002/ajpa.22335 23904240

39. Hoffman DL, Standish CD, García-Diez M, Pettitt PB, Zilhão J, Alcolea-González, et al. U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art. Science. 2018; 359(6378): 912–915. doi: 10.1126/science.aap7778 29472483

40. Hoffman DL, Angelucci DE, Villaverde V, Zapata J, Zilhão J. Symbolic use of marine shells and mineral pigments by Iberian Neandertals 115,000 years ago. Sci Adv. 2018; 4(2): eaar5255. doi: 10.1126/sciadv.aar5255 29507889

41. Jaubert J, Verheyden S, Genty D, Soulier M, Cheng H, Blamart D, et al. Early Neanderthal constructions deep in Bruniquel Cave in southwestern France. Nature. 2016; 534(7605): 111–114, doi: 10.1038/nature18291 27251286

42. Trinkaus E, Moldovan O, Milota S, Bîlgăr A, Sarcina L, Athreya S, et al. An early modern human from the Peştera cu Oase, Romania. Proc Natl Acad Sci USA. 2003; 100(20): 11231–11236. doi: 10.1073/pnas.2035108100 14504393

43. Trinkaus E, Buzhilova AP, Mednikova MB, and Dobrovolskaya MV. The People of Sunghir: Burials, Bodies, and Behavior in the Earlier Upper Paleolithic. Oxford: Oxford University Press; 2014.

44. Frayer DW, Jelínek J, Oliva M, and Wolpoff MH. Aurignacian male crania, jaws and teeth from the Mladeč Caves, Moravia, Czech Republic. In: Teschler-Nicola M, editor. Early Modern Humans at the Moravian Gate: The Mladeč Caves and their Remains. Vienna: Springer Verlag; 2006. pp 185–272.

45. Soficaru A, Doboş A, and Trinkaus E. Early modern humans from the Pestera Muierii, Baia de Fier, Romania. Proc Natl Acad Sci USA. 2006; 103(46):17196–17201. doi: 10.1073/pnas.0608443103 17085588

46. Crevecoeur I, Rougier H, Grine FE, and Froment A. Modern human cranial diversity in the Late Pleistocene of Africa and Eurasia: Evidence from Nazlet Khater, Peştera cu Oase, and Hofmeyr. Am J Phys Anthropol. 2009; 140(2): 347–358. doi: 10.1002/ajpa.21080 19425102

47. Ramirez Rozzi FV, d'Errico F, Vanhaeren M, Grootes PM, Kerautret B, and Dujardin V. Cutmarked human remains bearing Neandertal features and modern human remains associated with the Aurignacian at Les Rois. J Anthropol Sci. 2009; 87: 153–185. 19663173.

48. Verna C, Dujardin V, and Trinkaus E. The Early Aurignacian human remains from La Quina-Aval (France). J Hum Evol. 2012; 62(5): 605–617. doi: 10.1016/j.jhevol.2012.02.001 22459765

49. Prüfer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature. 2014; 505(7481): 43–49. doi: 10.1038/nature12886 24352235

50. Posth C, Wißing C, Kitagawa K, Pagani L, van Holstein L, Racimo F, et al. Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals. Nat Commun. 2017; 8: 16046. doi: 10.1038/ncomms16046 28675384

51. Sollas WJ. On the cranial and facial characters of the Neandertal race. Philos Trans R Soc Lond B Biol Sci. 1908; 199: 281–339. doi: 10.1098/rstb.1908.0007

52. Martin H. L'Homme Fossile de La Quina. Paris: Librairie Octave Doin; 1923.

53. Koby FE. Une incisive Néandertalienne trouvé en Suisse. Verhandlungen der Naturforschenden Gesellschaft in Basel. 1956; 67: 1–15.

54. Lumley MA de. Anténéandertaliens et Néandertaliens du Bassin Méditerranéen Occidental Européen. Université de Provence: Editions du Laboratoire de Paléontologie Humaine et de Préhistoire; 1973.

55. Brace CL. Comment on: Did La Ferrassie I use his teeth as a tool? Curr Anthropol. 1975; 16(3): 396–397. doi: 10.1086/201570

56. Brace CL, Ryan AS, Smith FH. Comment: tooth wear in La Ferrassie man. Curr Anthropol. 1981; 22(4): 426–430.

57. Trinkaus E. The Shanidar Neandertals. New York: Academic Press; 1983.

58. Trinkaus E. Morphological contrasts between the Near Eastern Qafzeh-Skhūl and late archaic human samples: grounds for a behavioral difference? In: Akazawa KA, Kimura T, editors. The Evolution and Dispersal of Modern Humans in Asia. Tokyo: Hokusen-Sha Publishing Co.; 1992. pp. 277–294.

59. Lalueza-Fox C and Pérez-Pérez A. Cutmarks and post-mortem striations in fossil human teeth. Hum Evol; 1994; 9(2): 165–172. doi: 10.1007/BF02437262

60. Lalueza-Fox C and Frayer DW. Non-dietary marks in the anterior dentition of the Krapina Neanderthals. Int J Osteoarchaeol 1997; 7(2): 133–149. doi: 10.1002/(SICI)1099-1212(199703)7:2<133::AID-OA326>3.0.CO;2–4

61. Arsuaga JL, Martínez I, Lorenzo C, Quam R, Carretero M, Gracia A. Las estrías del incisivo de Cova Negra. In: Villaverde V, editor. De neandertales a cromañones: el inicio poblamiento humano en las tierras valencianas. València: Universitat de València; 2001. pp. 327–328.

62. Compton T and Stringer CB. The human remains. In: Aldhouse-Green S, Peterson R, and Walker EA, editors. Neanderthals in Wales: Pontnewydd and the Elwy Valley Caves. Oxford: Oxbow Books; 2012. pp.118–230.

63. Volpato V, Macchiarelli R, Guatelli-Steinberg D, Fiore I, Bondioli L, and Frayer DW. Hand to mouth in a Neandertal: Right-handedness in Regourdou 1. PLoS One. 2012; 7(8): e43949. doi: 10.1371/journal.pone.0043949 22937134

64. Hlusko LJ, Carlson J, Guatelli-Steinberg D, Krueger KL, Mersey B, Ungar PS, et al. Neanderthal teeth from Moula Guercy, Ardèche, France. Am J Phys Anthropol. 2013; 151(3): 477–491, doi: 10.1002/ajpa.22291 23737145

65. Estalrrich A and Rosas A. Handedness in Neandertals from the El Sidron (Asturias, Spain): Evidence from instrumental striations with ontogenetic inferences. PLoS One. 2013; 8(5): e62797. doi: 10.1371/journal.pone.0062797 23671635

66. Estalrrich A and Rosas A. Division of labor by sex and age in Neandertals: an approach through the study of activity-related dental wear. J Hum Evol. 2015; 80: 51–63. doi: 10.1016/j.jhevol.2014.07.007 25681013

67. Fiore I, Bondioli L, Radovčić J, Frayer DW. Handedness in the Krapina Neandertals: a re-evaluation. PaleoAnthropol. 2015; 19–36. doi: 10.4207/PA.2015.ART93

68. Lozano M, Estalrrich A, Bondioli L, Fiore I, Bermúdez de Castro J-M, Arsuaga JL, et al. Right-handed fossil humans. Evol Anthropol. 2017; 26(6): 313–324. doi: 10.1002/evan.21554 29265662

69. Willman JC. The Non-Masticatory Use of the Anterior Teeth Among Late Pleistocene Humans. Ph.D. Dissertation, Washington University in Saint Louis. 2016.

70. Willman JC. The dental remains: non-masticatory wear. In: Trinkaus E, Walker MJ, editors. The People of Palomas: Neandertals from the Sima de las Palomas, Cabezo Gordo, Southeastern Spain. College Station: Texas A&M University Press; 2017. pp. 155–174.

71. Puech P-F. L'alimentation de l'home préhistorique. La Recherche. 1978; 94(9): 1029–1031.

72. Puech P-F. 1979. The diet of early man: evidence from abrasion of teeth and tools. Curr. Anthropol. 20(3), 590–591. doi: 10.1086/202335

73. Puech P-F. Tooth wear in La Ferrassie man. Curr Anthropol. 1981; 22(4): 424–429. doi: 10.1086/202699

74. Wallace JA. Did La Ferrassie I use his teeth as a tool? Curr Anthropol. 1975; 16(3): 393–401. doi: 10.1086/201570

75. Smith FH. On anterior tooth wear at Krapina and Ochoz. Curr Anthropol. 1976; 17(1): 167–168. doi: 10.1086/201701

76. Brace CL. Environment, tooth form and size in the Pleistocene. J Dent Res. 1967; 46 (Supplement to No. 5): 809–816. doi: 10.1177/00220345670460053501 5234021

77. Ryan AS. Anterior Dental Microwear in Hominid Evolution: Comparisons with Human and Nonhuman Primates. PhD dissertation, University of Michigan, 1980.

78. Man EH. On the aboriginal inhabitants of the Andaman Islands (Part III). J R Anthropol Inst. 1883; 12: 327–434. doi: 10.2307/2841948

79. Man EH. On the Andaman Islands, and their inhabitants. J R Anthropol Inst. 1885; 14: 253–272. doi: 10.2307/2841983

80. Marshall J and Gardner R. The Hunters. !Kung Series (film). Watertown: Documentary Educational Resources; 1957.

81. Molar S. Tooth wear and culture: A survey of tooth functions among some prehistoric populations. Curr Anthropol. 1972; 13(5): 511–526. doi: 10.1086/201284

82. Cybulski JS. Tooth wear and material culture: precontact patterns in the Tsimshian area, British Columbia. Syesis. 1974; 7: 31–35.

83. Lukacs JR and Pastor RF. Activity-induced patterns of dental abrasion in prehistoric Pakistan: evidence from Mehrgarh and Harappa. Am J Phys Anthropol. 1988; 76(3): 377–398. doi: 10.1002/ajpa.1330760310 3046373

84. Foote BA. The Tigara Eskimos and their Environment. Point Hope: North Slope Borough, Commission on Iñupiat History, Language, and Culture; 1992.

85. Mayes AT. Patterns through time: interactions between changes in subsistence and human dentition at Illinois Bluff, Jersey County, Illinois, and Spiro Mounds, Oklahoma. Ph.D. Dissertation, University of Colorado. 2001.

86. Berbesque JC, Marlowe FW, Pawn I, Thompson P, Johnson G, Mabulla A. Sex differences in Hadza dental wear patterns. Human Nature. 2012; 23(3): 270–282. doi: 10.1007/s12110-012-9145-9 22752874

87. Krueger KL and Ungar PS. Incisor microwear textures of five bioarchaeological populations. Int J Osteoarchaeol. 2010; 20(5): 549–560. doi: 10.1002/oa.1093

88. Krueger KL. Reconstructing diet and behavior in bioarchaeological groups using incisor microwear texture analysis. J Archaeol Sci Rep. 2015; 1: 29–37. doi: 10.1016/j.jasrep.2014.10.002

89. El Zaatari S, Grine FE, Ungar PS, Hublin J-J. Ecogeographic variation in Neandertal dietary habits: evidence from occlusal molar microwear analysis. J Hum Evol. 2011; 61(4): 411–424. doi: 10.1016/j.jhevol.2011.05.004 21719068

90. Fiorenza L, Benazzi S, Tausch J, Kullmer O, Bromage TG, & Schrenk F. Molar macrowear reveals Neanderthal eco-geographic dietary variation. PLoS One. 2011; 6(3): e14769. doi: 10.1371/journal.pone.0014769 21445243

91. Fiorenza L, Benazzi S, Henry AG, Salazar-García D, Blasco R, Picin A, Wroe S, & Kullmer O. To meat or not to meat? New perspectives on Neanderthal ecology. 2014. Am J Phys Anthropol. 156(S59): 43–71. doi: 10.1002/ajpa.22659 25407444

92. Doboş A, Soficaru A, and Trinkaus E. The Prehistory and Paleontology of the Peştera Muierii (Romania). Étud Rech Archéol Uni Liège. 2010; 124: 1–122.

93. Clement AF, Hillson SW, and Aiello LC. Tooth wear, Neanderthal facial morphology and the anterior dental loading hypothesis. J Hum Evol. 2012; 62(3): 367–376. doi: 10.1016/j.jhevol.2011.11.014 22341317

94. Willman JC. Dental wear at Dolní Vĕstonice II: Habitual behaviors and social identities written on teeth. In: Svoboda J, editor. Dolní Vĕstonice II: Chronostratigraphy, Paleoethnology, Paleoanthropology Dolní Věstonice Studies 21. Brno: Archeologický ústav AV ČR; 2016. pp. 353–371.

95. Trinkaus E. Dental crown dimensions of Middle and Late Pleistocene European humans. In: Rubio S, editor. Miscalánea en Homenaje a Emiliano Aguirre. Alcalá de Henares: Museo Arqueológico Regional; 2004. pp. 393–398.

96. Bailey SE. Beyond shovel-shaped incisors: Neandertal dental morphology in a comparative context. Period Biol. 2006; 108(3): 253–267.

97. Hillson SW. Dental morphology, proportions, and attrition. In Trinkaus Eand Svoboda J, editors. Early Modern Human Evolution in Central Europe: The People of Dolní Vӗstonice and Pavlov. New York: Oxford University Press; 2006. pp. 179–223.

98. Zapata J, Bayle P, Lombardi AV, Pérez-Pérez A, & Trinkaus E. (2017). The Palomas dental remains: preservation, wear and morphology In: Trinkaus E, Walker MJ, editors. The People of Palomas: Neandertals from the Sima de las Palomas, Cabezo Gordo, Southeastern Spain. College Station: Texas A&M University Press; 2017. pp. 52–104.

99. Vlček E. Human remains from Pavlov and the biological anthropology of the Gravettian human population of South Moravia. In: Svoboda J, Klíma B, Vlček E., editors. Pavlov I—Northwest: The Upper Paleolithic Burial and Its Settlement Context. Brno: Archeologický ústav AV ČR; 1997. pp. 53–153.

100. Smith FH. Behavioral interpretation of changes in craniofacial morphology across the archaic/modern Homo sapiens transition. In: Trinkaus E., editor. The Mousterian Legacy. Oxford: British Archaeological Reports International Series; 1983. pp. 141–163.

101. Rak Y. The Neanderthal: A new look at an old face. J Hum Evol. 1986; 15(3): 151–164. doi: 10.1016/S0047-2484(86)80042-2

102. Demes B. Another look at an old face: biomechanics of the Neandertal facial skeleton reconsidered. J Hum Evol. 1987; 16(3): 297–303. doi: 10.1016/0047-2484(87)90005-4

103. Trinkaus E. The Neandertal face: evolutionary and functional perspectives on a recent hominind face. J Hum Evol. 1987; 16(5): 429–443. doi: 10.1016/0047-2484(87)90071-6

104. Smith FH & Paquette SP. The adaptive basis of Neandertal facial form, with some thoughts on the nature of modern human origins. In: Trinkaus E., editor. The Emergence of Modern Humans. Cambridge: Cambridge University Press; 1989. pp. 181–210.

105. Spencer MA & Demes B. Biomechanical analysis of masticatory system configuration in Neandertals and Inuits. Am J Phys Anthropol. 1993; 91(1): 1–20. doi: 10.1002/ajpa.1330910102 8512051

106. Brace CL. Biocultural interaction and the mechanism of mosaic evolution in the emergence of “modern” morphology. Am Anthropol. 1995; 97(4): 711–721. doi: 10.1525/aa.1995.97.4.02a00130

107. Le Cabec A, Gunz P, Kupczik K, Braga J, & Hublin J-J. Anterior tooth root morphology and size in Neanderthals: taxonomic and functional implications. J Hum Evol. 2013; 64(3): 169–193. doi: 10.1016/j.jhevol.2012.08.011 23266488

108. Antón SC. Neandertals and the anterior dental loading hypothesis: a biomechanical evaluation of bite force production. Kroeber Anthropol. Soc. Paper. 1990; 71–72: 67–76.

109. Antón SC. Biomechanical and other perspectives on the Neandertal face. In: Corruccini RS, Ciochon RL., editors. Integrative Paths to the Past. Englewood Cliffs: Prentice Hall; 1994. pp. 677–695.

110. Antón SC. Tendon-associated bone features of the masticatory system in Neandertals. J Hum Evol. 1996; 31(5): 391–408. doi: 10.1006/jhev.1996.0068

111. O’Connor CF, Franciscus RG, & Holton NE. Bite force production capability and efficiency in Neandertals and modern humans. Am J Phys Anthropol. 2005; 127(2): 129–151. doi: 10.1002/ajpa.20025 15558614

112. Franciscus RG. Internal nasal floor configuration in Homo with special reference to the evolution of Nenadertal facial form. J Hum Evol. 2003; 44(6): 701–729. doi: 10.1016/S0047-2484(03)00062-9 12799160

113. Weaver TD, Roseman CC, & Stringer CB. Were Neandertal and modern human cranial differences produced by natural selection or genetic drift? J Hum Evol. 2007; 53(2): 135–145. doi: 10.1016/j.jhevol.2007.03.001 17512036

114. Holton NE & Franciscus RG. The paradox of a wide nasal aperture in cold-adapted Neandertals: a causal assessment. J Hum Evol. 2008; 55(6): 942–951. doi: 10.1016/j.jhevol.2008.07.001 18842288

115. Hublin J-J. The origin of Neandertals. Proc Natl Acad Sci USA. 2009; 106(38): 16022–16027. doi: 10.1073/pnas.0904119106 19805257

116. Weaver TD. The meaning of Neandertal skeletal morphology. Proc. Natl. Acad. Sci. USA. 2009; 106(38): 16028–16033. doi: 10.1073/pnas.0903864106 19805258

117. Holton NE, Yokley TR, & Franciscus RG. Climatic adaptation and Neandertal facial evolution: A comment on Rae et al., (2011). J Hum Evol. 2011; 61(5): 624–627. doi: 10.1016/j.jhevol.2011.08.001 21920585

118. Rae TC, Koppe T, & Stringer CB. The Neanderthal face is not cold adapted. J Hum Evol. 2011; 60(2): 234–239. doi: 10.1016/j.jhevol.2010.10.003 21183202

119. Wroe S, Parr WCH, Ledogar JA, Bourke J, Evans SP, Fiorenza L, et al. Computer simulations show that Neanderthal facial morphology represents adaptation to cold and high energy demands, but not heavy biting. Proc R Soc B. 2018; 285: 20180085. doi: 10.1098/rspb.2018.0085 29618551

120. Frayer DW, Fiore I, Lalueza-Fox C, Radovčić, & Bondioli L. Right handed Neandertals: Vindija and beyond. J Anthropol Sci. 2010; 88: 113–127. 20834053

121. Kullmer O, Benazzi S, Fioreza L, Schulz D, Bacso S, & Winzen O. Technical note: Occlusal fingerprint analysis: quantification of tooth wear pattern. Am J Phys Anthropol. 2009; 139(4): 600–605. doi: 10.1002/ajpa.21086 19425091

122. Fiorenza L, & Kullmer O. Dental wear patterns in early modern humans from Skhul and Qafzeh: A response to Sarig and Tillier. Homo. 2015; 66(5): 414–419. doi: 10.1016/j.jchb.2015.04.002 26048367

123. Fiorenza L. Reconstructing diet and behaviour of Neanderthals from Central Italy through dental macrowear analysis. J Anthropol Sci. 2015; 93: 1–15. doi: 10.4436/JASS.93006

124. Fiorenza L, Benazzi S, Tausch J, Kullmer O, & Schrenk F. Brief communicaton: Identification reassessment of the isolated tooth Krapina D58 through occlusal fingerprint analysis. Am J Phys Anthropol. 2010; 143(2): 306–312. doi: 10.1002/ajpa.21311 20853483

125. Fiorenza L, Benazzi S, Kullmer O, Zampirolo G, Mazurier A, Zanolli C, & Macchiarelli R. Dental macrowear and cortical bone distribution of the Neanderthal mandible from Regourdou (Dordogne, Southwestern France). J Hum Evol. 2019; 132: 174–188. doi: 10.1016/j.jhevol.2019.05.005 31203846

126. Williams FL, Droke JL, Schmidt CW, Willman JC, Becam G, de Lumley M-A. Dental microwear texture analysis of Neandertals from Hortus cave, France. C R Palevol. 2018; 17(8): 545–556. doi: 10.1016/j.crpv.2018.04.003

127. Portman MV. A History of our Relations with the Andamanese. Calcutta: Office of the Superintendent of Government Printing, India; 1899.

128. Beechey FW. Narrative of a Voyage to the Pacific and Beering’s Strait, to Co-operate with the Polar Expeditions: Performed in His Majesty’s Ship Blossom, under the Command of Captain F. Beechey, R.N. London: Henry Colburn and Richard Bentley; 1831.

129. Simpson J. Observations on the Western Eskimo and the country they inhabit, from notes taken during two years at Point Barrow. London: J. Murray; 1875.

130. Burch ES. The Traditional Eskimo Hunters of Point Hope, Alaska: 1800–1875. Barrow: North Slope Borough; 1981.

131. Turner CG and Cadien JD. Dental chipping in the Aleuts, Eskimos, and Indians. Am J Phys Anthropol. 1969; 31(3): 303–310. doi: 10.1002/ajpa.1330310305 5370954

132. Merbs CF. Patterns of activity-induced pathology in a Canadian Inuit population. National Museum of Man Mercury Series, Archaeological Survey of Canada, Paper No. 119. Ottawa: National Museums of Canada; 1983.

133. Wood SR. Tooth wear and the Sexual Division of Labour in an Inuit Population. MA Thesis, Simon Fraser University. 1992.

134. Arman SD, Ungar PS, Brown CA, DeSantis LRG, Schmidt C, Prideaux GJ. Minimizing inter-microscope variability in dental microwear texture analysis. Surf Topogr Metrol Prop. 2016; 4: 024007. doi: 10.1088/2051-672X/4/2/024007

135. Scott RS, Ungar PS, Bergstrom TS, Brown CA, Childs BE, Teaford MF, et al. Dental microwear texture analysis: technical considerations. J Hum Evol. 2006; 51(4): 339–349. doi: 10.1016/j.jhevol.2006.04.006 16908052

136. Krueger KL and Ungar PS. Anterior dental microwear texture analysis of the Krapina Neandertals. Cent Eur J Geosci. 2012; 4(4): 651–662. doi: 10.2478/s13533-012-0111-1

137. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna: Austria; 2018. Available from: https://www.R-project.org/.

138. Dabbs GR. Health and nutrition at prehistoric Point Hope, Alaska: application and critique of the Western Hemisphere Health Index. Ph.D. Dissertation, University of Arkansas. 2009.

139. Álvarez-Fernández E. Humans and marine resource interaction reappraised: archaeofauna remains during the late Pleistocene and Holocene in Cantabrian Spain. J Anthropol Archaeol. 2011; 30(3): 327–343. doi: 10.1016/j.jaa.2011.05.005

140. O'Connor S, Ono R, Clarkson C. Pelagic fishing at 42,000 years before the present and the maritime skills of modern humans. Science. 2011; 334(6059): 1117–1121. doi: 10.1126/science.1207703 22116883

141. Trinkaus E. Anatomical evidence for the antiquity of human footwear use. J Archaeol Sci. 2005; 32(10): 1515–1526. doi: 10.1016/j.jas.2005.04.006

142. Trinkaus E and Shang H. Anatomical evidence for the antiquity of human footwear: Tianyuan and Sunghir. J Archaeol Sci. 2008; 35(7): 1928–1933. doi: 10.1016/j.jas.2007.12.002

143. Trinkaus E and Buzhilova AP. Diversity and differential disposal of the dead at Sunghir. Antiquity. 2018; 92(361): 7–21. doi: 10.15184/aqy.2017.223

144. Soffer O, Adovasio JM, and Hyland DC. The "Venus" figurines: textiles, basketry, gender, and status in the Upper Paleolithic. Curr Anthropol. 2000; 41(4): 511–537. doi: 10.1086/317381

145. Mathiassen T. Archaeology of the Central Eskimo. Report of the Fifth Thule Expedition 1921–24. Copenhagen: Gyldendalske Boghandel, Nordisk Forlag; 1927.

146. McCartney AP. Thule Eskimo Prehistory along Northwestern Hudson Bay. National Museum of Man Mercury Series, manuscript 70. Ottawa: National Museums of Canada; 1977.

147. Staab ML. Analysis of faunal material recovered from a Thule Eskimo site on the island of Silumiut, B.W.T., Canada. In: McCartney AP, editor. Thule Eskimo Culture: an Anthropological Perspective. Ottawa: Mercury Series, National Archaeological Survey of Canada, 88, National Museum of Man; 1979. pp. 349–389.

148. Coltrain JB. Sealing, whaling and caribou revisited: additional insights from the skeletal isotope chemistry of eastern Arctic foragers. J Archaeol Sci. 2009; 36(3): 764–775. doi: 10.1016/j.jas.2008.10.022

149. Coltrain JB, Hayes MG, and O'Rourke DH. Sealing, whaling and caribou: the skeletal isotope chemistry of Eastern Arctic foragers. J Archaeol Sci. 2004; 31(1): 39–57. doi: 10.1016/j.jas.2003.06.003


Článek vyšel v časopise

PLOS One


2019 Číslo 11