Honey bee microbiome associated with different hive and sample types over a honey production season


Autoři: Sladjana Subotic aff001;  Andrew M. Boddicker aff001;  Vy M. Nguyen aff001;  James Rivers aff001;  Christy E. Briles aff002;  Annika C. Mosier aff001
Působiště autorů: Department of Integrative Biology, University of Colorado, Denver, Colorado, United States of America aff001;  Department of Geography and Environmental Sciences, University of Colorado, Denver, Colorado, United States of America aff002
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223834

Souhrn

Western honey bees (Apis mellifera) are important pollinators in natural and agricultural ecosystems, and yet are in significant decline due to several factors including parasites, pathogens, pesticides, and habitat loss. A new beehive construction called the FlowTM hive was developed in 2015 to allow honey to be harvested directly from the hive without opening it, resulting in an apparent decrease in stress to the bees. Here, we compared the Flow and traditional Langstroth hive constructions to determine if there were any significant differences in the bee microbiome. The bee-associated bacterial communities did not differ between hive constructions and varied only slightly over the course of a honey production season. Samples were dominated by taxa belonging to the Lactobacillus, Bifidobacterium, Bartonella, Snodgrassella, Gilliamella, and Frischella genera, as observed in previous studies. The top ten most abundant taxa made up the majority of the sequence data; however, many low abundance organisms were persistent across the majority of samples regardless of sampling time or hive type. We additionally compared different preparations of whole bee and dissected bee samples to elaborate on previous bee microbiome research. We found that bacterial sequences were overwhelming derived from the bee guts, and microbes on the bee surfaces (including pollen) contributed little to the overall microbiome of whole bees. Overall, the results indicate that different hive constructions and associated disturbance levels do not influence the bee gut microbiome, which has broader implications for supporting hive health.

Klíčová slova:

Bacteria – Bees – Bifidobacterium – DNA extraction – Honey – Honey bees – Lactobacillus – Microbiome


Zdroje

1. Hung KLJ, Kingston JM, Albrecht M, Holway DA, Kohn J. Worldwide importance of honey bees as natural pollinators. Proc R Soc B. 2018;285(1870):1–8.

2. National Research Council. Status of Pollinators in North America. 2007. http://www.nap.edu/catalog/11761/status-of-pollinators-innorth-america

3. The White House Fact Sheet: The Economic Challenge Posed by Declining Pollinator Populations. 2014. https://obamawhitehouse.archives.gov/the-press-office/2014/06/20/fact-sheet-economic-challenge-posed-declining-pollinator-populations

4. Gallai N, Salles JM, Settele J, Vaissière B. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics. 2009;68(3):810–21.

5. vanEngelsdorp D, Underwood R, Dewey C, Hayes J Jr. An Estimate of Managed Colony Losses in the Winter of 2006–2007: A Report Commissioned by the Apiary Inspectors of America. American Bee Journal. 2007;147(7):599–603.

6. vanEngelsdorp D, Hayes J Jr, Underwood RM, Pettis J. A survey of honey bee colony losses in the U.S., fall 2007 to spring 2008. PLoS ONE. 2008;3(12):e4071. doi: 10.1371/journal.pone.0004071 19115015

7. vanEngelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, et al. Colony collapse disorder: a descriptive study. PLoS ONE. 2009;4(8):e6481. doi: 10.1371/journal.pone.0006481 19649264

8. Morimoto T, Kojima Y, Toki T, Komeda Y, Yoshiyama M, Kimura K, et al. The habitat disruption induces immune-suppression and oxidative stress in honey bees. Ecol Evol. 2011;1(2):201–17. doi: 10.1002/ece3.21 22393496

9. Youngsteadt E, Appler RH, López-Uribe MM, Tarpy DR, Frank SD. Urbanization increases pathogen pressure on feral and managed honey bees. PLoS ONE. 2015;10(11):e0142031. doi: 10.1371/journal.pone.0142031 26536606

10. López-Uribe MM, Appler RH, Youngsteadt E, Dunn RR, Frank SD, Tarpy DR. Higher immunocompetence is associated with higher genetic diversity in feral honey bee colonies (Apis mellifera). Conserv Genet. 2017;18(3):659–66.

11. Simone-Finstrom M, Li-Byarlay H, Huang MH, Strand MK, Rueppell O, Tarpy DR. Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees. Sci Rep. 2016;6:32023. doi: 10.1038/srep32023 27554200

12. Di Prisco G, Cavaliere V, Annoscia D, Varricchio P, Caprio E, Nazzi F, et al. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. PNAS. 2013;110(46):18466–71. doi: 10.1073/pnas.1314923110 24145453

13. Raymann K, Shaffer Z, Moran NA. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol. 2017;15(3):e2001861. doi: 10.1371/journal.pbio.2001861 28291793

14. Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, et al. A metagenomic survey of microbes in honey bee colony collapse disorder. Science. 2007;318(5848):283–7. doi: 10.1126/science.1146498 17823314

15. Cornman RS, Tarpy DR, Chen Y, Jeffreys L, Lopez D, Pettis JS, et al. Pathogen Webs in Collapsing Honey Bee Colonies. PLoS ONE. 2012;7(8):e43562. doi: 10.1371/journal.pone.0043562 22927991

16. Runckel C, Flenniken ML, Engel JC, Ruby JG, Ganem D, Andino R, et al. Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia. PLoS ONE. 2011;6(6):e20656. doi: 10.1371/journal.pone.0020656 21687739

17. Raymann K, Moran NA. The role of the gut microbiome in health and disease of adult honey bee workers. Curr Opin Insect Sci. 2018;26:97–104. doi: 10.1016/j.cois.2018.02.012 29764668

18. Flow. 2019 Apr 11 (cited 11 April 2019). Available from: https://www.honeyflow.com/.

19. Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18(5):1403–14. doi: 10.1111/1462-2920.13023 26271760

20. Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ. Removing noise from pyrosequenced amplicons. BMC Bioinformatics. 2011;12(38):1–18.

21. Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, et al. Improved bacterial 16s rRNA gene (V4 and V5) and fungal internal transcribed spacer maker gene primers for microbial community surveys. mSystems. 2015;1(1):e00009–15. doi: 10.1128/mSystems.00009-15 27822518

22. Naqib A, Poggi S, Wang W, Hyde M, Kunstman K, Green SJ. Making and sequencing heavily multiplexed, high-throughput 16S ribosomal RNA gene amplicon libraries using a flexible, two-stage PCR protocol. In: Raghavachari N., Garcia-Reyero N. (eds) Gene Expression Analysis. Methods in Molecular Biology, vol 1783. New York: Humana Press; 2018. pp. 149–69.

23. Bybee SM, Bracken-Grissom H, Haynes BD, Hermansen RA, Byers RL, Clement MJ, et al. Targeted amplicon sequencing (TAS): a scalable next-gen approach to multilocus, multitaxa phylogenetics. Genome Biol Evol. 2011; 3:1312–23. doi: 10.1093/gbe/evr106 22002916

24. Moonsamy PV, Williams T, Bonella P, Holcomb CL, Höglund BN, Hillman G, et al. High throughput HLA genotyping using 454 sequencing and the Fluidigm Access Array™ system for simplified amplicon library preparation. Tissue antigens. 2013;81(3):141–9. doi: 10.1111/tan.12071 23398507

25. Caporaso JG, Kuczynnski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6. doi: 10.1038/nmeth.f.303 20383131

26. DeSantis TZ, Huggenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72(7):P5069–72.

27. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulous J, Bealer K. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10(421):1–9.

28. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–6. doi: 10.1093/nar/gks1219 23193283

29. Wright ES, Yilmaz S, Noguera DR. DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol. 2012;78(3):717–25. doi: 10.1128/AEM.06516-11 22101057

30. Pruesse E, Peplies J, Glöckner FO. SINA; accurate high-throughput multiple sequence alighnment of ribosomal RNA genes. Bioinformatics. 2012;28(14):1823–9. doi: 10.1093/bioinformatics/bts252 22556368

31. McMurdie PJ, Holmes S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8(4):e61217. doi: 10.1371/journal.pone.0061217 23630581

32. Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and Qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol. 2007;73(5):1576–85. doi: 10.1128/AEM.01996-06 17220268

33. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. vegan: Community Ecology Package. 2015. Available from: http://cran.r-project.org/package=vegan

34. Hammer TJ, Dickerson JC, Fierer N. Evidence-based recommendations on storing and handling specimens for analyses of insect microbiota. Peer J. 2015; 3:e1190. doi: 10.7717/peerj.1190 26311208

35. Ludvigsen J, Rangberg A, Avershina E, Sekelja M, Kreibich C, Amdam G. Shifts in the midgut/pyloric microbiota composition within a honey bee apiary throughout a season. Microbes Environ. 2015;30(3):235–44. doi: 10.1264/jsme2.ME15019 26330094

36. Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S, Moran NA. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol Ecol. 2011;20(3):619–28. doi: 10.1111/j.1365-294X.2010.04959.x 21175905

37. Moran NA, Hansen AK, Power JE, Sabree ZL. Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS ONE. 2012;7(4):e36393. doi: 10.1371/journal.pone.0036393 22558460

38. Jones JC, Fruciano C, Hildebrand F, Al Toufalilia H, Balfour NJ, Bork P, et al. Gut microbiota composition is associated with environmental landscape in honey bees. Ecol Evol. 2017;8(1):441–51. doi: 10.1002/ece3.3597 29321884

39. Corby-Harris V, Maes P, Anderson KE. The bacterial communities associated with honey bee (Apis mellifera) foragers. PLoS ONE. 2014;9(4):e95056. doi: 10.1371/journal.pone.0095056 24740297

40. Kwong WK, Moran NA. Gut microbial communities of social bees. Nat Rev Microbiol. 2016;14(6)374–84. doi: 10.1038/nrmicro.2016.43 27140688

41. Kešnerová L, Mars RAT, Ellegaard KM, Troilo M, Sauer U, Engel P. Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biol. 2017; 15(12): e2003467. doi: 10.1371/journal.pbio.2003467 29232373

42. Vásquez A, Forgren E, Fries I, Paxton RJ, Flaberg E, Szekely L, et al. Symbionts as major modulators of insect health. PLoS ONE. 2012;7(3):e33188. doi: 10.1371/journal.pone.0033188 22427985

43. Forsgren E, Olofsson TC, Vásquez A, Fries I. Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie. 2010;41(1):99–108.

44. Engel P, Kwong WK, Moran NA. Frischella perrara gen. nov., sp. nov., a gammaproteobacterium isolated from the gut of the honeybee, Apis mellifera. Int J Syst Evol Microbiol. 2013;63:3646–3651. doi: 10.1099/ijs.0.049569-0 23606484

45. Engel P, Bartlett KD, Moran NA. The bacterium Frischella perrara causes scab formation in the gut of its honeybee host. mBio. 2015;6(3):e00193–15. doi: 10.1128/mBio.00193-15 25991680

46. Emery O, Schmidt K, Engel P. Immune system stimulation by the gut symbiont Frischella perrara in the honey bee (Apis mellifera). Mol Ecol. 2017;26(9):2576–2590. doi: 10.1111/mec.14058 28207182

47. Kešnerová L, Moritz R, Engel P. Bartonella apis sp. nov., a honey bee gut symbiont of the class Alphaproteobacteria. Int J Syst Ecol Microbiol. 2016;66(1):414–21.

48. Segers FH, Kešnerová L, Kosoy M, Engel P. Genomic changes associated with the evolutionary transition of an insect gut symbiont into a blood-borne pathogen. The ISME Journal. 2017;11:1232–1244. doi: 10.1038/ismej.2016.201 28234349

49. Kwong WK, Engel P, Koch H, Moran NA. Genomics and host specialization of honey bee and bumble bee gut symbionts. PNAS. 2014; 111(31):11509–11514. doi: 10.1073/pnas.1405838111 25053814

50. Schwarz RS, Teixeira ÉW, Tauber JP, Birke JM, Martins MF, Fonseca I, et al. Honey bee colonies act as reservoirs for two Spiroplasma facultative symbionts and incur complex, multiyear infection dynamics. Microbiologyopen. 2014;3(3):341–55. doi: 10.1002/mbo3.172 24771723

51. Clark TB. Honey bee spiroplasmosis, a new problem for beekeepers. Am Bee J. 1978;118:18–9.

52. Galac MR, Lazzaro BP. Comparative pathology of bacteria in the genus Providencia to a natural host, Drosophila melanogster. Microbes Infect. 2011;13(7):673–83. doi: 10.1016/j.micinf.2011.02.005 21354324

53. Khan KA, Ansari MJ, Al-Ghamdi A, Nuru A, Harakeh S, Iqbal J. Investigation of gut microbial communities associated with indigenous honey bee (Aplis mellifera jemenitica) from two different eco-regions of Saudi Arabia. Saudi J Biol Sci. 2017;24(5):1061–68. doi: 10.1016/j.sjbs.2017.01.055 28663705

54. Galac MR, Lazzaro BP. Comparative genomics of bacteria in the genus Providencia isolated from wild Drosophila melanogaster. BMC Genomics. 2012;13:612. doi: 10.1186/1471-2164-13-612 23145767


Článek vyšel v časopise

PLOS One


2019 Číslo 11