Manganese levels in infant formula and young child nutritional beverages in the United States and France: Comparison to breast milk and regulations


Autoři: Seth H. Frisbie aff001;  Erika J. Mitchell aff002;  Stéphane Roudeau aff003;  Florelle Domart aff003;  Asuncion Carmona aff003;  Richard Ortega aff003
Působiště autorů: Department of Chemistry and Biochemistry, Norwich University, Northfield, VT, United States of America aff001;  Better Life Laboratories, Incorporated, East Calais, VT, United States of America aff002;  University of Bordeaux, Centre d’Etudes Nucléaires de Bordeaux Gradignan (CENBG), Gradignan, France aff003;  Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), CENBG, Gradignan, France aff004
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223636

Souhrn

Exposure to high levels of manganese (Mn) in children has recently been associated with adverse neurodevelopmental effects. Current infant formula regulations for Mn content were set between 1981 (United States), 2006 (European Union, France), and 2007 (Codex Alimentarius) prior to the publication of much of the growing body of research on the developmental neurotoxicity of Mn. In this study, we sought to measure the concentrations of Mn in some infant formulas and young child nutritional beverages available on the United States (US) and French markets using ion beam analysis by particle induced X-ray emission (PIXE) spectrometry and then compare the analytical results to concentrations reported in the literature for breast milk and applicable infant formula regulations and guidelines. We were particularly interested in measuring Mn concentrations in product types for which there is very little data from previous surveys, especially soy-based, rice-based, goat-milk based, chocolate-flavored, and nutritional beverages for young children that are not regulated as infant or follow-on formulas (e.g. “toddler formulas” and “toddler powders”). We purchased 44 infant formulas and young child nutritional beverage products in the US and France with varying protein sources (cow-milk, goat-milk, soy, rice) labelled for birth to 3 years. We selected these samples using maximum variation sampling to explore market extremes to facilitate comparisons to regulatory limits. Since this sampling method is non-probabilistic, other inferences cannot be made beyond this set of samples to the overall markets. We used ion beam analysis to measure the concentrations of Mn in each product. The range of measured Mn concentrations in the products is 160–2,800 μg/L, substantially higher than the 3–6 μg/L mean Mn concentration reported in human breast milk. All products satisfied national and Codex Alimentarius Commission (CAC) international standards for minimum Mn content in infant formulas; however, 7/25 of the products purchased in the US exceeded the CAC Guidance Upper Level of 100 μg Mn/kcal for infant formula.

Klíčová slova:

Beverages – Breast milk – Chocolate – Infants – Manganese – Milk – Rice – Toddlers


Zdroje

1. Code of Federal Regulations (21 CFR 107). Title 21—Food and drugs. Part 107—Infant formula. 2017. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=107. Cited 17 November 2017.

2. Codex Alimentarius Commission (CAC). Standard for infant formula and formulas for special medical purposes intended for infants. CODEX STAN 72–1981. 2016. Available from: http://www.fao.org/fao-who-codexalimentarius/standards/list-of-standards/en/. Cited 9 November 2017.

3. ECEC0771649A. Journal Officiel de la République Française (Official Journal of the French Republic). Arrêté du 11 avril 2008 relatif aux préparations pour nourrissons et aux préparations de suite et modifiant l’arrêté du 20 septembre 2000 relatif aux aliments diététiques destinés à des fins médicales spéciales (Order of 11 April 2008 on infant formulas and follow-on formulas and amending the order of 20 September 2000 on dietary foods for special medical purposes). n°0096 du 23 avril 2008 page 6700, texte n°18, Version consolidée au 15 janvier 2018 (n°0096 of April 23, 2008 page 6700, text n°18, consolidated version on January 15, 2018). Available from: https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000018685743&dateTexte=20180115. Cited 15 January 2018.

4. Roels HA, Bowler RM, Kim Y, Henn BC, Mergler D, Hoet P, et al. Manganese exposure and cognitive deficits: A growing concern for manganese neurotoxicity. Neurotoxicology. 2012;33(4):872–880. doi: 10.1016/j.neuro.2012.03.009 22498092

5. Grandjean P, Landrigan P Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014;13: 330–38. doi: 10.1016/S1474-4422(13)70278-3 24556010

6. Lucchini R, Placidi D, Cagna G, Fedrighi C, Oppini M, Peli M, et al. Manganese and developmental neurotoxicity. Adv Neurobiol. 2017;18:13–34. doi: 10.1007/978-3-319-60189-2_2 28889261

7. Neal AP, Guilarte TR. Mechanisms of lead and manganese neurotoxicity. Toxicol Res (Camb). 2013;2(2):99–114. doi: 10.1039/C2TX20064C 25722848

8. Valcke M, Bourgault M-H, Haddad S, Bouchard M, Gauvin D, Levallois P. Deriving a drinking water guideline for a non-carcinogenic contaminant: The case of manganese. Int J of Environ Res and Pub Health 2018;15:1293. doi: 10.3390/ijerph15061293 29925794

9. European Commission (EC). Official Journal of the European Union. Commission delegated regulation (EU) 2016/127 of 25 September 2015 supplementing Regulation (EU) No 609/2013 of the European Parliament and of the Council as regards the specific compositional and information requirements for infant formula and follow-on formula and as regards requirements on information relating to infant and young child feeding. 2015. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0127. Cited 1 February 2016.

10. Rodriguez-Barranco M, Lacasaña M, Aguilar-Garduño C, Alguacil J, Gil F, González-Alzaga B, Rojas-García A. Association of arsenic, cadmium and manganese exposure with neurodevelopment and behavioural disorders in children: A systematic review and meta-analysis. Sci Total Environ. 2013;454–455:562–577. doi: 10.1016/j.scitotenv.2013.03.047 23570911

11. O’Neal SL, Zheng W. Manganese Toxicity Upon Overexposure: a Decade in Review. Curr Envir Health Rpt. 2015;2:315–328. doi: 10.1007/s40572-015-0056-x 26231508

12. Menezes-Filho JA, Bouchard M, Sarcinelli P, Moreira JC. Manganese exposure and the neuro psychological effect on children and adolescents: a review. Rev Panam Salud Public. 2009;26:541–8. doi: 10.1590/s1020-49892009001200010 20107709

13. Bhang SY, Cho SC, Kim JW, Hong YC, Shin MS, Yoo HJ, et al. Relationship between blood manganese levels and children's attention, cognition, behavior, and academic performance—a nationwide cross-sectional study. Environ Res. 2013;126:9–16. doi: 10.1016/j.envres.2013.05.006 23790803

14. Claus Henn B, Ettinger AS, Schwartz J, Téllez-Rojo MM, Lamadrid-Figueroa H, Hernández-Avila M, et al. Maternal and cord blood manganese concentrations and early childhood neurodevelopment among residents near a mining-impacted Superfund site. Environ Health Perspect. 2017;125(6):067020. doi: 10.1289/EHP925 28665786

15. Lee JJ, Valeri L, Kapur K, Ibne Hasan MOS, Quamruzzaman Q, Wright RO, et al. Growth parameters at birth mediate the relationship between prenatal manganese exposure and cognitive test scores among a cohort of 2- to 3-year-old Bangladeshi children. Int J Epidemiol. 2018;47(4):1169–1179. doi: 10.1093/ije/dyy069 29733356

16. Mora AM, Córdoba L, Cano JC, Hernandez-Bonilla D, Pardo L, Schnaas L, et al. Prenatal Mancozeb Exposure, Excess Manganese, and Neurodevelopment at 1 Year of Age in the Infants' Environmental Health (ISA) Study. Environ Health Perspect. 2018;126(5):057007. doi: 10.1289/EHP1955 29847083

17. Muñoz Rocha TV, Tamayo y Ortiz M, Romero M, Pantic I, Schnaas L, Bellinger D, et al. Prenatal co-exposure to manganese and depression and 24-months neurodevelopment. Neurotoxicology. 2018;64:134–141. doi: 10.1016/j.neuro.2017.07.007 28728787

18. Nascimento SN, Barth A, Göethel G, Baierle M, Charão MF, Brucker N, et al. Cognitive deficits and ALA-D-inhibition in children exposed to multiple metals. Environ Res. 2015;136:387–95. doi: 10.1016/j.envres.2014.10.003 25460660

19. Valeri L, Mazumdar MM, Bobb JF, Claus Henn B, Rodrigues E, Sharif OIA, et al. The joint effect of prenatal exposure to metal mixtures on neurodevelopmental outcomes at 20–40 months of age: evidence from rural Bangladesh. Environ Health Perspect. 2017;125(6):067015. doi: 10.1289/EHP614 28669934

20. Yu XD, Zhang J, Yan CH, Shen XM. Prenatal exposure to manganese at environment relevant level and neonatal neurobehavioral development. Environ Res. 2014;133:232–8. doi: 10.1016/j.envres.2014.04.012 24971720

21. Yu X, Chen L, Wang C, Yang X, Gao Y, Tian Y. The role of cord blood BDNF in infant cognitive impairment induced by low-level prenatal manganese exposure: LW birth cohort, China. Chemosphere. 2016;163:446–451. doi: 10.1016/j.chemosphere.2016.07.095 27565312

22. Kullar SS, Shao K, Surette C, Foucher D, Mergler D, Cormier P, et al. A benchmark concentration analysis for manganese in drinking water and IQ deficits in children. Environ Int. 2019;130:104889. doi: 10.1016/j.envint.2019.05.083 31200154

23. Bjørklund G, Chartrand MS, Aaseth J. Manganese exposure and neurotoxic effects in children. Environ Res. 2017;155:380–384. doi: 10.1016/j.envres.2017.03.003 28282629

24. Peres TV, Schettinger MRC, Chen P, Carvalho F, Avila DS, Bowman AB. Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies. BMC Pharm Tox. 2016;17:57. doi: 10.1186/s40360-016-0099-0 27814772

25. Zoni S, Lucchini RG. Manganese exposure: cognitive, motor and behavioral effects on children: a review of recent findings. Curr Opin Pediatr. 2013;25:255–260. doi: 10.1097/MOP.0b013e32835e906b 23486422

26. Betancourt Ó, Tapia M, Méndez I. Decline of general intelligence in children exposed to manganese from mining contamination in Puyango River Basin, Southern Ecuador. Ecohealth. 2015;12(3):453–60. doi: 10.1007/s10393-015-1027-2 25851196

27. Bouchard MF, Surette C, Cormier P, Foucher D. Low level exposure to manganese from drinking water and cognition in school-age children. Neurotoxicology. 2018;64:110–117. doi: 10.1016/j.neuro.2017.07.024 28716743

28. Dion LA, Saint-Amour D, Sauvé S, Barbeau B, Mergler D, Bouchard MF. Changes in water manganese levels and longitudinal assessment of intellectual function in children exposed through drinking water. Neurotoxicology. 2018;64:118–125. doi: 10.1016/j.neuro.2017.08.015 28870865

29. Haynes EN, Sucharew H, Hilbert TJ, Kuhnell P, Spencer A, Newman NC, et al. Impact of air manganese on child neurodevelopment in East Liverpool, Ohio. Neurotoxicology. 2018;64:94–102. doi: 10.1016/j.neuro.2017.09.001 28888663

30. Menezes-Filho JA, Carvalho CF, Rodrigues JLG, Araújo CFS, Dos Santos NR, Lima CS, et al. Environmental co-exposure to lead and manganese and intellectual deficit in school-aged children. Int J Environ Res Public Health. 2018;15(11). doi: 10.3390/ijerph15112418 30384464

31. Wasserman GA, Liu X, Parvez F, Ahsan H, Factor-Litvak P, Kline, et al. Water manganese exposure and children’s intellectual function in Araihazar, Bangladesh. Environ Health Perspect. 2006;114:124–129. doi: 10.1289/ehp.8030 16393669

32. Bauer JA, Claus Henn B, Austin C, Zoni S, Fedrighi C, Cagna G, et al. Manganese in teeth and neurobehavior: Sex-specific windows of susceptibility. Environ Int. 2017;108:299–308. doi: 10.1016/j.envint.2017.08.013 28941415

33. Carvalho CF, Oulhote Y, Martorelli M, Carvalho CO, Menezes-Filho JA, Argollo N, et al. Environmental manganese exposure and associations with memory, executive functions, and hyperactivity in Brazilian children. Neurotoxicology. 2018;69:253–259. doi: 10.1016/j.neuro.2018.02.002 29432852

34. García-Chimalpopoca Z, Hernández-Bonilla D, Cortez-Lugo M, Escamilla-Núñez C, Schilmann A, Riojas-Rodríguez H, et al. Verbal Memory and Learning in Schoolchildren Exposed to Manganese in Mexico. Neurotox Res. 2019. doi: 10.1007/s12640-019-00037-7 31148117

35. Hernández-Bonilla D, Schilmann A, Montes S, Rodríguez-Agudelo Y, Rodríguez-Dozal S, Solís-Vivanco R, et al. Effects of manganese exposure on visuoperception and visual memory in schoolchildren. Neurotoxicology. 2016;57:230–240. doi: 10.1016/j.neuro.2016.10.006 27737811

36. Takser L, Mergler D, Hellier G, Sahuquillo J, Huel G. Manganese, monoamine metabolite levels at birth, and child psychomotor development. Neurotoxicology. 2003;24(4–5):667–74. doi: 10.1016/S0161-813X(03)00058-5 12900080

37. Woolf A, Wright R, Amarasiriwardena C, Bellinger D. A child with chronic manganese exposure from drinking water. Environ Health Perspect. 2002;110(6):613–6. doi: 10.1289/ehp.02110613 12055054

38. Claus Henn B, Austin C, Coull BA, Schnaas L, Gennings C, Horton MK, et al. Uncovering neurodevelopmental windows of susceptibility to manganese exposure using dentine microspatial analyses. Environ Res. 2018;161:588–598. doi: 10.1016/j.envres.2017.12.003 29247915

39. Chiu YM, Claus Henn B, Hsu HL, Pendo MP, Coull BA, Austin C, et al. Sex differences in sensitivity to prenatal and early childhood manganese exposure on neuromotor function in adolescents. Environ Res. 2017;159:458–465. doi: 10.1016/j.envres.2017.08.035 28858760

40. Dion LA, Bouchard MF, Sauvé S, Barbeau B, Tucholka A, Major P, et al. MRI pallidal signal in children exposed to manganese in drinking water. Neurotoxicology. 2016 Mar;53:124–131. doi: 10.1016/j.neuro.2016.01.004 26801245

41. Lao Y, Dion LA, Gilbert G, Bouchard MF, Rocha G, Wang Y, et al. Mapping the basal ganglia alterations in children chronically exposed to manganese. Sci Rep. 2017;7:41804. doi: 10.1038/srep41804 28155922

42. Aschner JL, Anderson A, Slaughter JC, Aschner M, Steele S, Beller A, et al. Neuroimaging identifies increased manganese deposition in infants receiving parenteral nutrition. Am J Clin Nutr. 2015;102(6):1482–9. doi: 10.3945/ajcn.115.116285 26561627

43. de Water E, Proal E, Wang V, Medina SM, Schnaas L, Téllez-Rojo MM, et al. Prenatal manganese exposure and intrinsic functional connectivity of emotional brain areas in children. Neurotoxicology. 2018;64:85–93. doi: 10.1016/j.neuro.2017.06.006 28610744

44. Shih J-H, Zeng B-Y, Lin P-Y, Chen T-Y, Chen Y-W, Wu C-K, et al. Association between peripheral manganese levels and attention-deficit/hyperactivity disorder: a preliminary meta-analysis. Neuropsych Dis Treat. 2018; 14:1831–1842. doi: 10.2147/NDT.S16537

45. Haynes EN, Chen A, Ryan P, Succop P, Wright J, Dietrich KN. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity. Environ Res. 2011;111(8):1243–8. doi: 10.1016/j.envres.2011.08.008 21864838

46. Horton MK, Hsu L, Claus Henn B, Margolis A, Austin C, Svensson K, et al. Dentine biomarkers of prenatal and early childhood exposure to manganese, zinc and lead and childhood behavior. Environ Int. 2018;121(Pt 1):148–158. doi: 10.1016/j.envint.2018.08.045 30205321

47. Rodrigues JLG, Araújo CFS, Dos Santos NR, Bandeira MJ, Anjos ALS, Carvalho CF, et al. Airborne manganese exposure and neurobehavior in school-aged children living near a ferro-manganese alloy plant. Environ Res. 2018;167:66–77. doi: 10.1016/j.envres.2018.07.007 30007874

48. Lucchini RG, Guazzetti S, Zoni S, Donna F, Peter S, Zacco A, Salmistraro M, et al. Tremor, olfactory and motor changes in Italian adolescents exposed to historical ferro-manganese emission. Neurotoxicology. 2012;33(4):687–96. doi: 10.1016/j.neuro.2012.01.005 22322213

49. Lucchini RG, Zoni S, Guazzetti S, Bontempi E, Micheletti S, Broberg K. Inverse association of intellectual function with very low blood lead but not with manganese exposure in Italian adolescents. Environ Res. 2012;118:65–71. doi: 10.1016/j.envres.2012.08.003 22925625

50. Parvez F, Wasserman GA, Factor-Litvak P, Liu X, Slavkovich V, Siddique AB, et al. Arsenic Exposure and Motor Function among Children in Bangladesh. Environ Health Persp. 2011;119:1665–1670. doi: 10.1289/ehp.1103548 21742576

51. Rahbar MH, Samms-Vaughan M, Dickerson AS, Loveland KA, Ardjomand-Hessabi M, Bressler J, et al. Blood manganese concentrations in Jamaican children with and without autism spectrum disorders. Environ Health. 2014;13:69. doi: 10.1186/1476-069X-13-69 25149876

52. Rink SM, Ardoino G, Queirolo EI, Cicariello D, Mañay N, Kordas K. Associations between hair manganese levels and cognitive, language, and motor development in preschool children from Montevideo, Uruguay. Arch Environ Occupat Health. 2013;69:46–54. doi: 10.1080/19338244.2012.7525229

53. Leonhard MJ, Chang ET, Loccisano AE, Garry MR. A systematic literature review of epidemiologic studies of developmental manganese exposure and neurodevelopmental outcomes. Toxicology. 2019;420:46–65. doi: 10.1016/j.tox.2019.03.004 30928475

54. European Food Safety Authority (EFSA). Scientific opinion on the essential composition of infant and follow-on formulae. EFSA J. 2014;12(7):3760. https://doi.org/10.2903/j.efsa.2014.3760.

55. Casey CE, Smith A, Zhang P. Microminerals in Human and Animal Milks. In Jensen RG (editor). Handbook of Milk Composition. 1995. San Diego: Academic Press, pp. 622–674.

56. Ljung K, Palm B, Grandér M, Vahter M. High concentrations of essential and toxic elements in infant formula and infant foods–A matter of concern. Food Chem. 2011;127:943−951. doi: 10.1016/j.foodchem.2011.01.062 25214082

57. Stastny D, Vogel RS, Picciano MF. Manganese intake and serum manganese concentration of human milk-fed and formula-fed infants. Am J Clin Nutr. 1984;39(6):872–8. doi: 10.1093/ajcn/39.6.872 6539060

58. Pandelova M, Levy Lopez W, Michalke B, Schramm KW Ca, Cd, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn contents in baby foods from the EU market: Comparison of assessed infant intakes with the present safety limits for minerals and trace elements. J Food Comp Anal. 2012; 27(2): 120–127. doi: 10.1016/j.jfca.2012.04.011

59. Dörner K, Dziadzka S, Hohn A, Schaub J. Longitudinal manganese and copper balances in young infants and preterm infants fed on breast-milk and adapted cow’s milk formulas. Br J Nutr. 1989;61:559−572. doi: 10.1079/bjn19890143 2758010

60. Paquette LH, and Thompson JJ. Minerals and trace elements in milk, milk products, infant formula, and adult/pediatric nutritional formula, ICP-MS method: Collaborative study, AOAC final action 2015.06, ISO/DIS 21424, IDF 243. Journal of AOAC International 2018; 101(2):536–561. doi: 10.5740/jaoacint.17-0318 29151407

61. Poitevin E. Official methods for the determination of minerals and trace elements in infant formula and milk products: A review. Journal of AOAC International. 2016; 99(1):42–52. doi: 10.5740/jaoacint.15-0246 26821839

62. Aras NK, Ataman OY. X-ray methods. In: Aras NK, Ataman OY, editors. Trace element analysis of food and diet. Cambridge, UK: The Royal Society of Chemistry; 2006. p. 193−204. doi: 10.1039/9781847552495

63. Akanle OA, Balogun FA, Owa JA, Spyrou NM. Study of the nutritional status of maternal breast milk in preterm infants in Nigeria. J. Radioanal. Nucl. Chem. 2000;244:231−235. doi: 10.1023/A:1006713626499

64. Balogun FA, Akanle OA, Spyrou NM, Owa JA. A comparative study of elemental composition of human breast milk and infant milk substitutes. Biol Trace Elem Res. 1994;Fall,43−45;471−479. doi: 10.1007/bf02917349 7710863

65. Castro Gonzalez NP, Moreno-Rojas R, Calderón Sánchez F, Moreno Ortega A, Juarez Meneses M. Assessment risk to children’s health due to consumption of cow’s milk in polluted areas in Puebla and Tlaxcala, Mexico. Food Addit Contam Part B. 2017;10(3):200−207. doi: 10.1080/19393210.2017.1316320 28393675

66. Khatun R, Ahasan MM, Abedin MJ, Akter S. Study of human milk in terms of sampling time and age of the lactating mothers. SUST J Sc Tech. 2012;20(6):80−83.

67. Olabanji SO, Buoso MC, Ceccato D, Haque AMI, Cherubini R, Moschini G. PIGE-PIXE analysis of human milk. Nucl Instrum Methods Phys Res B. 1996;109/110:258−261. doi: 10.1016/0168-583X(95)00918-3

68. Solis C, Isaac-Olive K, Mireles A, Vidal-Hernandez M. Determination of trace metals in cow’s milk from waste water irrigated areas in Central Mexico by chemical treatment coupled to PIXE. Microchem J. 2009;91(1):9−12. doi: 10.1016/j.microc.2008.06.001

69. Spyrou NM. Variations in trace element concentrations in breast milk with stages of lactation. J Radioanal Nucl Chem. 2001;249(1):71–75.

70. Crinella FM. Does soy-based infant formula cause ADHD? Update and public policy considerations. Expert Rev Neurother. 2012;12(4):395–407. doi: 10.1586/ern.12.2 22449212

71. Teddlie C, Yu F. Mixed methods sampling, A typology with examples. J Mix Methods Res. 2007; 1(1):77–100. https://doi.org/10.1177/2345678906292430.

72. Sorieul S, Alfaurt P, Daudin L, Serani L, Moretto P. AIFIRA: An ion beam facility for multidisciplinary research. Nucl Instrum Methods Phys Res B. 2014;332:68−73. doi: 10.1016/j.nimb.2014.02.032

73. Johansson SAE, Johansson T. Analytical application of particle induced X-ray emission. Nucl Instr Meth Phys Res. 1976;137(3): 473−516. doi: 10.1016/0029-554X(76)90470-5

74. Carmona A, Devès G, Ortega R. Quantitative micro-analysis of metal ions in subcellular compartments of cultured dopaminergic cells by combination of three ion beam techniques. Anal Bioanal Chem. 2008;390 (6):1585−1594. doi: 10.1007/s00216-008-1866-6 18246461

75. Perrin L., Carmona A., Roudeau S., Ortega R. Evaluation of sample preparation methods for single cell quantitative element imaging using proton or synchrotron radiation focused beams. J Anal Atom Spectrom. 2015;30: 2525–2532. doi: 10.1039/C5JA00303B

76. Chu WK, Mayer JW, Nicolet MA. Backscattering spectrometry. Orlando, FL: Academic Press, Inc., 1978.

77. Ortega R, Devès G, Carmona A. Bio-metals imaging and speciation in cells using proton and synchrotron radiation X-ray microspectroscopy. J R Soc Interface. 2009;6:S649–S658. doi: 10.1098/rsif.2009.0166.focus 19605403

78. Campbell JL, Boyd NI, Grassi N, Bonnick P, Maxwell JA. The Guelph PIXE software package IV. Nucl Instrum Methods Phys Res B. 2010;268(20):3356−3363. doi: 10.1016/j.nimb.2010.07.012

79. Mayer M. SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA. In: Duggan JL, Morgan IL, editors. Proceedings of the 15th international conference on the application of accelerators in research and industry. College Park, MD: American Institute of Physics Conference Proceedings; 1999;475:541.

80. Code of Federal Regulations (21 CFR 101.9). Title 21—Food and drugs. Part 101—Food labeling. Subpart A—General Provisions. §101.9—Nutrition labeling of food. 2017. Available from: https://www.ecfr.gov/cgi-bin/text-idx?SID=13b6ba5fb985cc64c070a3bc1f5e6a44&mc=true&node=se21.2.101_19&rgn=div8. Cited 28 November 2017.

81. Pacquette LH, Thompson JJ. Minerals and trace elements in milk, milk products, infant formula, and adult/pediatric nutritional formula, ICP-MS Method: Collaborative study, AOAC Final Action 2015.06,ISO/DIS 21424, IDF 243. J AOAC Int 2018;101(2):536–561. doi: 10.5740/jaoacint.17-0318 29151407

82. Skoog DA, West DM, Holler FJ, Crouch SR. Fundamentals of analytical chemistry. 9th ed. Boston: Brooks/Cole Division of Thomson Learning, Inc., 2014. p. 86.

83. Collipp PJ, Chen SY. Maitinsky S. Manganese in infant formulas and learning disability. Ann Nutr Metab. 1983;27:488−494. doi: 10.1159/000176724 6651226

84. Arnaud J, Favier A. Copper, iron, manganese and zinc contents in human colostrum and transitory milk of French women. Sci Total Environ. 1995;159:9−15. doi: 10.1016/0048-9697(94)04314-d 7846513

85. Fuente MA de la, Olano A, Juârez M. Distribution of calcium, magnesium, phosphorus, zinc, manganese, copper and iron between the soluble and colloidal phases of ewe’s and goat’s milk. Lait. 1997;77:515−520. doi: 10.1051/lait:1997437

86. Krachler M, Prohaska T, Koellensperger G, Rossipal E, Stingeder G. Concentrations of selected trace elements in human milk and in infant formulas determined by magnetic sector field inductively coupled plasma–mass spectrometry. Biol Trace Elem Res. 2000;76:97−112. doi: 10.1385/BTER:76:2:97 11049226

87. Leotsinidis M, Alexopoulos A, Kostopoulou-Farri E. Toxic and essential trace elements in human milk from Greek lactating women: Association with dietary habits and other factors. Chemosphere. 2005;61:238–247. doi: 10.1016/j.chemosphere.2005.01.084 16168747

88. Codex Alimentarius Commission (CAC). Standard for infant formula and formulas for special medical purposes intended for infants. CODEX STAN 72–1981. 2007. Available from: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/fr/?lnk=1&url= https://workspace.fao.org/sites/codex/Standards/CODEX+STAN+72-1981/CXS_072e.pdf. Cited 17 March 2018.

89. Codex Alimentarius Commission (CAC). Standard for follow-up formula. CODEX STAN 156–1987. 2017. Available from: http://www.fao.org/input/download/standards/293/CXS_156e.pdf. Cited 17 March 2018.

90. European Commission (EC). Official Journal of the European Union. Commission directive 2006/141/EC of 22 December 2006 on infant formulae and follow-on formulae and amending. 2006. Available from: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32006L0141. Cited 17 February 2018.

91. European Food Safety Authority (EFSA). Scientific opinion on nutrient requirements and dietary intakes of infants and young children in the European Union. 2013. Available from: http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2013.3408/epdf. Cited 13 March 2018.

92. Koletzko B, Baker S, Cleghorn G, Neto UF, Gopalan S, Hernell O, et al. Global standard for the composition of infant formula: Recommendations of an ESPGHAN coordinated international expert group. J Pediatr Gastroenterol Nutr. 2005;41:584–599. doi: 10.1097/01.mpg.0000187817.38836.42 16254515

93. Lönnerdal B. Nutritional aspects of soy formula. Acta Paediatr Suppl. 1994;402:105−108. 7841612

94. Cockell KA, Bonacci G, Belonje B. Manganese content of soy or rice beverages is high in comparison to infant formulas. J Am Coll Nutr. 2004;23(2):124−130. doi: 10.1080/07315724.2004.10719352 15047678

95. Gamela RR, Duarte AT, Barrera EG, Welz B, Dessuy MB, Silva MM da, et al. Development of analytical methods for the determination of copper and manganese in infant formula using high resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis. Anal Methods. 2017;9:2321−2327. doi: 10.1039/C6AY03332F

96. McKinstry PJ, Indyk HE, Kim ND. The determination of major and minor elements in milk and infant formula by slurry nebulisation and inductively coupled plasma—optical emission spectrometry (ICP-OES). Food Chem. 1999;65:245–252. doi: 10.1016/S0308-8146(98)00183-6

97. Thompkinson DK, Kharb S. Aspects of infant food formulation. Compr Rev Food Sci F. 2007;6:79−102. doi: 10.1111/j.1541-4337.2007.00020.x

98. Pennington JAT, Schoen SA, Salmon GD, Young B, Johnson RD, Marts RW. Composition of core foods of the U.S. food supply, 1982–1991: III. Copper, manganese, selenium, and iodine. J Food Compos Anal. 1995;8(2):171–217. doi: 10.1006/jfca.1995.1014

99. Yang X, Ye ZQ, Shi CH, Zhu ML, Graham RD. Genotypic differences in concentrations of iron, manganese, copper, and zinc in polished rice grains. J Plant Nutr. 1998;21(7):1453–1462. doi: 10.1080/01904169809365495

100. Amorim FR de, Nascentes CC, Franco MB, Silva JBB da. Fast determination of manganese in milk and similar infant food samples using multivariate optimization and GF AAS. Int J Spectrosc. 2011;810641. doi: 10.1155/2011/810641

101. Bagdat S, Baran EK, Tokay F. Element fractionation analysis for infant formula and food additives by inductively coupled plasma optical emission spectrometry. Int J Food Sci Tech. 2014;49;392−398.

102. Concha G, Eneroth H, Hallström H, Sand S. Contaminants and minerals in foods for infants and young children. Part 2: Risk and benefit assessment. 2013. https://www.livsmedelsverket.se/globalassets/rapporter/2013/2103_livsmedelsverket_1_part_2_contaminants_and_minerals_in_foods_for_infants_and_young_children_risk_and_benefit_assessment.pdf. Cited 19 October 2017.

103. Pashkova GV. X-ray fluorescence determination of element contents in milk and dairy products. Food Anal Methods. 2009;2:303−310. doi: 10.1007/s12161-009-9080-5

104. Peixoto RRA, Oliveira A, Cadore S. Multielemental determinations in chocolate drink powder using multivariate optimization and ICP OES. J Agric Food Chem. 2012;60:8117−8122. doi: 10.1021/jf303022r 22849827

105. Rehman S, Husnain SM. Assessment of trace metal contents in chocolate samples by atomic absorption spectrometry. J Trace Elem Anal. 2012;1(1):1−11. doi: 10.7726/jtea.2012.1001

106. Sager M. Chocolate and cocoa products as a source of essential elements in nutrition. J Nutr Food Sci. 2012;2:123. doi: 10.4172/2155-9600.1000123

107. Yanus RL, Sela H, Borojovich EJC, Zakon Y, Saphier M, Nikolski A, et al. Trace elements in cocoa solids and chocolate: An ICPMS study. Talanta. 2014;119:1−4. doi: 10.1016/j.talanta.2013.10.048 24401377

108. Ahmad I, Zaman A, Samad N, Ayaz MM, Rukh S, Akbar A, et al. Atomic absorption spectrophotometery detection of heavy metals in milk of camel, cattle, buffalo and goat from various areas of Khyber-Pakhtunkhwa (KPK), Pakistan. J Anal Bioanal Tech. 2017;8:367. doi: 10.4172/2155-9872.1000367

109. Coni E, Bocca A, Coppolelli P, Caroli S, Cavallucci C, Marinucci MT. Minor and trace element content in sheep and goat milk and dairy products. Food Chem. 1996;57(2):253−260.

110. Elhardallou SB, El-Naggar AY. Determination of micro minerals in milk from farm and pasture-reared cow, goat and camel; using inductively coupled plasma-optical emission spectrometry. Orient J Chem. 2016;32(1):341−347. doi: 10.13005/ojc/320138

111. Code of Federal Regulations (21 CFR 106.3). Title 21—Food and drugs. Part 106—Infant formula requirements pertaining to current good manufacturing practice, quality control procedures, quality factors, records and reports, and notifications. Subpart A- General provisions. §106.3 Definitions. 2018. Available from: https://www.ecfr.gov/cgi-bin/text-idx?SID=3a1a2e85dc99eefc557fa981e1c5a37a&mc=true&node=pt21.2.106&rgn=div5#se21.2.106_13. Cited 12 January 2018.

112. Code of Federal Regulations (21 CFR 105.3). Title 21—Food and drugs. Part 105—Foods for special dietary use. Subpart A—General provisions. §105.3 Definitions and interpretations. 2018. Available from: https://www.ecfr.gov/cgi-bin/text-idx?SID=b27c3cb20fafd344e33494b3d7897d6e&mc=true&node=pt21.2.105&rgn=div5#se21.2.105_13. Cited 12 January 2018.

113. Palafox MJR, Harris JL. Toddler formulas: Nutritional value and marketing claims. FASEB J. 2017;31(1):Supplement 169.5.

114. Pomeranz JL, Romo Palafox MJ, Harris JL. Toddler drinks, formulas, and milks: Labeling practices and policy implications. Prev Med 2018;109:11–16. doi: 10.1016/j.ypmed.2018.01.009 29339115

115. Lönnerdal B. Hernell O. An opinion on “staging” of infant formula: A developmental perspective on infant feeding. J Pediatr Gastroenterol Nutr. 2016;62(1):9−21. doi: 10.1097/MPG.0000000000000806 25844707

116. Klein LD, Breakey AA, Scelza B, Valeggia C, Jasienska G, Hinde K. Concentrations of trace elements in human milk: Comparisons among women in Argentina, Namibia, Poland, and the United States. PLoS One. 2017;12(8):e0183367. doi: 10.1371/journal.pone.0183367 28817665

117. Berry NJ, Jones SC, Iverson DC. Circumventing the WHO Code? An observational study. Arch Dis Child. 2012;97(4):320–325. doi: 10.1136/adc.2010.202051 21719442

118. World Health Organization (WHO). Cross-promotion of infant formula and toddler milks. Available from https://www.who.int/nutrition/publications/infantfeeding/information-note-cross-promotion-infant-formula/en/. Cited 4 June, 2019.

119. Agence française de sécurité sanitaire des aliments (AFSSA; French Food Safety Agency). Avis de l’Agence française de sécurité sanitaire des aliments relatif à l’évaluation d’un aliment diététique destiné aux nourrissons, enrichi en manganèse (Opinion of the French Food Safety Agency concerning the evaluation of a dietary food for infants, enriched in manganese). 2002. Available from: https://www.anses.fr/fr/system/files/NUT2001sa0090.pdf. Cited 17 March 2018.

120. Code of Federal Regulations (21 CFR 184). Title 21—Food and drugs. Part 184—Direct food substances affirmed as generally recognized as safe. Subpart B—Listing of specific substances affirmed as GRAS. §184—Manganese. 1985. Available from: https://www.ecfr.gov/cgi-bin/text-idx?SID=4cfb299566660110dba593fb82b371e1&mc=true&node=pt21.3.184&rgn=div5#se21.3.184_11446. Cited 19 November 2017.

121. United States Food and Drug Administration (US FDA). SCOGS (Select Committee on GRAS Substances). 2017. Available from: http://www.accessdata.fda.gov/scripts/fdcc/?set=SCOGS. Cited 17 November 2017.


Článek vyšel v časopise

PLOS One


2019 Číslo 11