Distribution of macular ganglion cell layer thickness in foveal hypoplasia: A new diagnostic criterion for ocular albinism


Autoři: Viktoria C. Brücher aff001;  Peter Heiduschka aff001;  Ulrike Grenzebach aff001;  Nicole Eter aff001;  Julia Biermann aff001
Působiště autorů: Dept. of Ophthalmology, University of Muenster Medical Centre, Muenster, Germany aff001
Vyšlo v časopise: PLoS ONE 14(11)
Kategorie: Research Article
doi: 10.1371/journal.pone.0224410

Souhrn

Background/Aims

To analyse the distribution of macular ganglion cell layer thickness (GCLT) in patients with foveal hypoplasia (FH) with or without albinism to obtain new insights into visual pathway anomalies in albinos.

Methods

Patients with FH who presented at our institution between 2013 and 2018 were retrospectively drawn for analysis. Mean GCLT was calculated after automated segmentation of spectral domain-optical coherence tomography (SD-OCT) scans. Patients with FH due to albinism (n = 13, termed ‘albinism FH’) or other kinds (n = 10, termed ‘non-albinism FH’) were compared with control subjects (n = 15). The areas: fovea (central), parafovea (nasal I, temporal I) and perifovea (nasal II, temporal II) along the horizontal meridian were of particular interest. Primary endpoints of this study were the ratios (GCLT-I- and GCLT-II-Quotient) between the GCLT measured in the temporal I or II and nasal I or II areas.

Results

There was a significant difference between the GCLT-I-Quotient of healthy controls and albinism FH (p<0.001), as well as between non-albinism FH and albinism FH (p = 0.004). GCLT-II-Quotient showed significant differences between healthy controls and albinism FH (p<0.001) and between non-albinism FH and albinism FH (p = 0.006). The best measure for distinguishing between non-albinism FH and albinism FH was the calculation of GCLT-II-Quotient (area temporal II divided by area nasal II), indicating albinism at a cut-off of <0.7169. The estimated specificity and sensitivity for this cut-off were 84.6% and 100.0%, respectively. The estimated area under the curve (AUC) was 0.892 [95%CI: 0.743–1.000, p = 0.002].

Conclusion

Macular GCLT-distribution showed a characteristic temporal to central shift in patients with FH due to albinism. Calculation of the GCLT-II-Quotient at a cut-off of <0.7169 presents a new diagnostic criterion for identification of ocular albinism.

Klíčová slova:

Eyes – Fovea centralis – Ganglion cells – Retina – Visual acuity – Albinism – Visual-evoked potentials – Iris


Zdroje

1. Apkarian P, Reits D, Spekreijse H, Van Dorp D. A decisive electrophysiological test for human albinism. Electroencephalogr Clin Neurophysiol 1983;55(5):513–531. doi: 10.1016/0013-4694(83)90162-1 6187545

2. Thomas MG, Kumar A, Mohammad S, Proudlock FA, Engle EC, Andrews C, et al. Structural grading of foveal hypoplasia using spectral-domain optical coherence tomography a predictor of visual acuity? Ophthalmology 2011;118(8):1653–1660. doi: 10.1016/j.ophtha.2011.01.028 21529956

3. Garvin MK, Abramoff MD, Wu X, Russell SR, Burns TL, Sonka M. Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE Trans Med Imaging 2009;28(9):1436–1447. doi: 10.1109/TMI.2009.2016958 19278927

4. Garvin MK, Abramoff MD, Kardon R, Russell SR, Wu X, Sonka M. Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search. IEEE Trans Med Imaging 2008;27(10):1495–1505. doi: 10.1109/TMI.2008.923966 18815101

5. Cifuentes-Canorea P, Ruiz-Medrano J, Gutierrez-Bonet R, Peña-Garcia P, Saenz-Frances F, Garcia-Feijoo J, et al. Analysis of inner and outer retinal layers using spectral domain optical coherence tomography automated segmentation software in ocular hypertensive and glaucoma patients. PLoS One 2018;13(4):e0196112. doi: 10.1371/journal.pone.0196112 29672563

6. Yamashita T, Miki A, Goto K, Araki S, Takizawa G, Ieki Y et al. Retinal Ganglion Cell Atrophy in Homonymous Hemianopia due to Acquired Occipital Lesions Observed Using Cirrus High-Definition-OCT. J Ophthalmol 2016;2016:2394957. doi: 10.1155/2016/2394957 27274865

7. Invernizzi A, Pellegrini M, Acquistapace A Benatti E, Erba S, Cozzi M, et al. Normative Data for Retinal-Layer Thickness Maps Generated by Spectral-Domain OCT in a White Population. Ophthalmology Retina 2018;2(8):808–815.e1. doi: 10.1016/j.oret.2017.12.012 31047534

8. Oki R, Yamada K, Nakano S, Kimoto K, Yamamoto K, Kondo H, et al. A Japanese Family With Autosomal Dominant Oculocutaneous Albinism Type 4. Invest Ophthalmol Vis Sci 2017;58(2):1008–1016. doi: 10.1167/iovs.16-20612 28192564

9. Kruijt CC, de Wit GC, Bergen AA, Florijn RJ, Schalij-Delfos NE, van Genderen MM. The Phenotypic Spectrum of Albinism. Ophthalmology 2018;125(12):1953–1960. doi: 10.1016/j.ophtha.2018.08.003 30098354

10. Hoffmann MB, Lorenz B, Morland AB, Schmidtborn LC. Misrouting of the optic nerves in albinism: estimation of the extent with visual evoked potentials. Invest Ophthalmol Vis Sci 2005;46(10):3892–3898. doi: 10.1167/iovs.05-0491 16186379

11. Coleman J, Sydnor CF, Wolbarsht ML, Bessler M. Abnormal visual pathways in human albinos studied with visually evoked potentials. Exp Neurol 1979;65(3):667–679. doi: 10.1016/0014-4886(79)90052-9 467566

12. Noval S, Freedman SF, Asrani S, El-Dairi MA. Incidence of fovea plana in normal children. J AAPOS 2014;18(5):471–475. doi: 10.1016/j.jaapos.2014.07.157 25266830

13. Rossi S, Testa F, Gargiulo A, Di Iorio V, Pierri RB, D'Alterio FM et al. The role of optical coherence tomography in an atypical case of oculocutaneous albinism: a case report. Case Rep Ophthalmol 2012;3(1):113–117. doi: 10.1159/000337489 22548044

14. McCafferty B, Wilk M, McAllister J, Stepien KE, Dubis AM, Brilliant MH, et al. Clinical Insights Into Foveal Morphology in Albinism. J Pediatr Ophthalmol Strabismus. 2015;52(3):167–72.

15. Hoffmann MB, Seufert PS, Schmidtborn LC. Perceptual relevance of abnormal visual field representations: static visual field perimetry in human albinism. Br J Ophthalmol 2007;91(4):509–513. doi: 10.1136/bjo.2006.094854 17372340

16. Welton T, Ather S, Proudlock FA, Gottlob I, Dineen RA. Altered whole-brain connectivity in albinism. Hum Brain Mapp 2017;38(2):740–752. doi: 10.1002/hbm.23414 27684406

17. Hendrickson AE, Yuodelis C. The morphological development of the human fovea. Ophthalmology 1984;91(6):603–612 doi: 10.1016/s0161-6420(84)34247-6 6462623

18. Prieur DS, Rebsam A. Retinal axon guidance at the midline: Chiasmatic misrouting and consequences. Dev Neurobiol 2017;77(7):844–860. doi: 10.1002/dneu.22473 27907266

19. Guillery RW, Ombrellaro M, LaMantia AL. The organization of the lateral geniculate nucleus and of the geniculocortical pathway that develops without retinal afferents. Brain Res 1985;352(2):221–233. doi: 10.1016/0165-3806(85)90109-9 4027668

20. Apkarian P. Chiasmal crossing defects in disorders of binocular vision. Eye (Lond) 1996;10:222–232.


Článek vyšel v časopise

PLOS One


2019 Číslo 11