Lateral pressure equalisation as a principle for designing support surfaces to prevent deep tissue pressure ulcers


Autoři: Colin J. Boyle aff001;  Diagarajen Carpanen aff001;  Thanyani Pandelani aff001;  Claire A. Higgins aff001;  Marc A. Masen aff002;  Spyros D. Masouros aff001
Působiště autorů: Department of Bioengineering, Imperial College London, London, United Kingdom aff001;  Department of Mechanical Engineering, Imperial College London, London, United Kingdom aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227064

Souhrn

When immobile or neuropathic patients are supported by beds or chairs, their soft tissues undergo deformations that can cause pressure ulcers. Current support surfaces that redistribute under-body pressures at vulnerable body sites have not succeeded in reducing pressure ulcer prevalence. Here we show that adding a supporting lateral pressure can counter-act the deformations induced by under-body pressure, and that this ‘pressure equalisation’ approach is a more effective way to reduce ulcer-inducing deformations than current approaches based on redistributing under-body pressure. A finite element model of the seated pelvis predicts that applying a lateral pressure to the soft tissue reduces peak von Mises stress in the deep tissue by a factor of 2.4 relative to a standard cushion (from 113 kPa to 47 kPa)—a greater effect than that achieved by using a more conformable cushion, which reduced von Mises stress to 75 kPa. Combining both a conformable cushion and lateral pressure reduced peak von Mises stresses to 25 kPa. The ratio of peak lateral pressure to peak under-body pressure was shown to regulate deep tissue stress better than under-body pressure alone. By optimising the magnitude and position of lateral pressure, tissue deformations can be reduced to that induced when suspended in a fluid. Our results explain the lack of efficacy in current support surfaces and suggest a new approach to designing and evaluating support surfaces: ensuring sufficient lateral pressure is applied to counter-act under-body pressure.

Klíčová slova:

Deformation – Fats – Finite element analysis – Pelvis – Stiffness – Ulcers – Muscle tissue – Soft tissues


Zdroje

1. Vanderwee K, Clark M, Dealey C, Gunningberg L, Defloor T. Pressure ulcer prevalence in Europe: a pilot study. J Eval Clin Pract. 2007;13: 227–235. doi: 10.1111/j.1365-2753.2006.00684.x 17378869

2. Marin J, Nixon J, Gorecki C. A systematic review of risk factors for the development and recurrence of pressure ulcers in people with spinal cord injuries. Spinal Cord. 2013;51: 522–527. doi: 10.1038/sc.2013.29 23588570

3. Regan MA, Teasell RW, Wolfe DL, Keast D, Mortenson WB, Aubut J-AL. A Systematic Review of Therapeutic Interventions for Pressure Ulcers After Spinal Cord Injury. Arch Phys Med Rehabil. 2009;90: 213–231. doi: 10.1016/j.apmr.2008.08.212 19236976

4. Oomens CWJ, Bader DL, Loerakker S, Baaijens F. Pressure Induced Deep Tissue Injury Explained. Ann Biomed Eng. 2015;43: 297–305. doi: 10.1007/s10439-014-1202-6 25480479

5. Edsberg LE, Black JM, Goldberg M, McNichol L, Moore L, Sieggreen M. Revised National Pressure Ulcer Advisory Panel Pressure Injury Staging System. J Wound Ostomy Continence Nurs. 2016;43: 585–597. doi: 10.1097/WON.0000000000000281 27749790

6. James R, Evans P. Alternating pressure pads for bed patients. US3678520A, 1970. Available: https://patents.google.com/patent/US3678520A/en

7. T. R. JOHNSON. Air-Cushions for Invalid Beds. US211741A.

8. McInnes E, Jammali-Blasi A, Bell-Syer SE, Dumville JC, Middleton V, Cullum N. Support surfaces for pressure ulcer prevention. Cochrane Database Syst Rev. 2015; Cd001735. doi: 10.1002/14651858.CD001735.pub5 26333288

9. Nixon J, Smith IL, Brown S, McGinnis E, Vargas-Palacios A, Nelson EA, et al. Pressure Relieving Support Surfaces for Pressure Ulcer Prevention (PRESSURE 2): Clinical and Health Economic Results of a Randomised Controlled Trial. EClinicalMedicine. 2019;14: 42–52. doi: 10.1016/j.eclinm.2019.07.018 31709401

10. Reenalda J, Jannink M, Nederhand M, M IJ. Clinical use of interface pressure to predict pressure ulcer development: a systematic review. Assist Technol. 2009;21: 76–85. doi: 10.1080/10400430903050437 19715252

11. Gefen A, Levine J. The false premise in measuring body-support interface pressures for preventing serious pressure ulcers. J Med Eng Technol. 2007;31: 375–380. doi: 10.1080/03091900601165256 17701783

12. Melamed Y, Shupak A, Bitterman H. Medical problems associated with underwater diving. N Engl J Med. 1992;326: 30–5. doi: 10.1056/NEJM199201023260105 1727063

13. Bridel J. The aetiology of pressure sores. J Wound Care. 1993;2: 230–238. doi: 10.12968/jowc.1993.2.4.230 27911682

14. Oomens CW, Bressers OF, Bosboom EM, Bouten CV, Bader DL. Can loaded interface characteristics influence strain distributions in muscle adjacent to bony prominences? Comput Methods Biomech Biomed Engin. 2003;6: 171–80. doi: 10.1080/1025584031000121034 12888429

15. Bouten CV, Oomens CW, Baaijens FP, Bader DL. The etiology of pressure ulcers: Skin deep or muscle bound? Arch Phys Med Rehabil. 2003;84: 616–619. doi: 10.1053/apmr.2003.50038 12690603

16. Kosiak M. Etiology of decubitus ulcers. Arch Phys Med Rehabil. 1961;42: 19. 13753341

17. Peirce SM, Skalak TC, Rodeheaver GT. Ischemia‐reperfusion injury in chronic pressure ulcer formation: a skin model in the rat. Wound Repair Regen. 2000;8: 68–76. doi: 10.1046/j.1524-475x.2000.00068.x 10760216

18. Krouskop TA. A synthesis of the factors that contribute to pressure sore formation. Med Hypotheses. 1983;11: 255–267. doi: 10.1016/0306-9877(83)90067-1 6888310

19. Reddy NP, Cochran GVB, Krouskop TA. Interstitial fluid flow as a factor in decubitus ulcer formation. J Biomech. 1981;14: 879–881. doi: 10.1016/0021-9290(81)90015-4 7328094

20. Gawlitta D, Li W, Oomens CWJ, Baaijens FPT, Bader DL, Bouten CVC. The Relative Contributions of Compression and Hypoxia to Development of Muscle Tissue Damage: An In Vitro Study. Ann Biomed Eng. 2006;35: 273–284. doi: 10.1007/s10439-006-9222-5 17136445

21. Holzapfel GA. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley; 2000.

22. Chow WW, Odell EI. Deformations and Stresses in Soft Body Tissues of a Sitting Person. J Biomech Eng. 1978;100: 79. doi: 10.1115/1.3426196

23. Holzapfel GA. Biomechanics of Soft Tissue. Handbook of Materials Behavior Models. Elsevier; 2001. pp. 1057–1071. Available: https://doi.org/10.1016%2Fb978-012443341-0%2F50107-1

24. Van Loocke M, Lyons CG, Simms CK. A validated model of passive muscle in compression. J Biomech. 2006;39: 2999–3009. doi: 10.1016/j.jbiomech.2005.10.016 16313914

25. Morrow DA, Haut Donahue TL, Odegard GM, Kaufman KR. Transversely isotropic tensile material properties of skeletal muscle tissue. J Mech Behav Biomed Mater. 2010;3: 124–129. doi: 10.1016/j.jmbbm.2009.03.004 19878911

26. Soetens JFJ, van Vijven M, Bader DL, Peters GWM, Oomens CWJ. A model of human skin under large amplitude oscillatory shear. J Mech Behav Biomed Mater. 2018;86: 423–432. doi: 10.1016/j.jmbbm.2018.07.008 30031246

27. Sommer G, Eder M, Kovacs L, Pathak H, Bonitz L, Mueller C, et al. Multiaxial mechanical properties and constitutive modeling of human adipose tissue: A basis for preoperative simulations in plastic and reconstructive surgery. Acta Biomater. 2013;9: 9036–9048. doi: 10.1016/j.actbio.2013.06.011 23811521

28. Systèmes D, editor. Abaqus 2016 Documentation. Dassault Systèmes; 2016.

29. Ho J, Tumkaya T, Aryal S, Choi H, Claridge-Chang A. Moving beyond P values: data analysis with estimation graphics. Nat Methods. 2019;16: 565–566. doi: 10.1038/s41592-019-0470-3 31217592

30. Ragan R, Kernozek TW, Bidar M, Matheson JW. Seat-interface pressures on various thicknesses of foam wheelchair cushions: A finite modeling approach. Arch Phys Med Rehabil. 2002;83: 872–875. doi: 10.1053/apmr.2002.32677 12048671

31. Dabnichki PA, Crocombe AD, Hughes SC. Deformation and Stress Analysis of Supported Buttock Contact. Proc Inst Mech Eng [H]. 1994;208: 9–17. doi: 10.1177/095441199420800102

32. NPUAP. Support Surface Initiative Terms and Definitions of Support Surface. 2007 [cited 4 May 2018]. Available: http://www.npuap.org/NPUAP_S3I_TD.pdf

33. Brienza DM, Karg PE, Brubaker CE. Seat cushion design for elderly wheelchair users based on minimization of soft tissue deformation using stiffness and pressure measurements. IEEE Trans Rehabil Eng. 1996;4: 320–327. doi: 10.1109/86.547933 8973958

34. Bader DL, Worsley PR. Technologies to monitor the health of loaded skin tissues. Biomed Eng OnLine. 2018;17. doi: 10.1186/s12938-018-0470-z 29650012

35. Walia GS, Wong AL, Lo AY, Mackert GA, Carl HM, Pedreira RA, et al. Efficacy of Monitoring Devices in Support of Prevention of Pressure Injuries. Adv Skin Wound Care. 2016;29: 567–574. doi: 10.1097/01.ASW.0000504579.83707.f6 27846030

36. Shelton F, Barnett R, Meyer E. Full-body interface pressure testing as a method for performance evaluation of clinical support surfaces. Appl Ergon. 1998;29: 491–497. doi: 10.1016/s0003-6870(97)00069-0 9796795

37. Gil-Agudo A, Peña-González AD la, Ama-Espinosa AD, E. Pérez-Rizo ED-D, Sánchez-Ramos A. Comparative study of pressure distribution at the user-cushion interface with different cushions in a population with spinal cord injury. Clin Biomech. 2009;24: 558–563. doi: 10.1016/j.clinbiomech.2009.04.006 19447532

38. Keller BPJA, Lubbert PHW, Keller E, Leenen LPH. Tissue-interface pressures on three different support-surfaces for trauma patients. Injury. 2005;36: 946–948. doi: 10.1016/j.injury.2004.09.017 16023909

39. Mueller MJ, Zou D, Lott DJ. “Pressure Gradient” as an Indicator of Plantar Skin Injury. Diabetes Care. 2005;28: 2908–2912. doi: 10.2337/diacare.28.12.2908 16306553

40. Olesen CG, Zee M de, Rasmussen J. Missing links in pressure ulcer research—An interdisciplinary overview. J Appl Physiol. 2010;108: 1458–1464. doi: 10.1152/japplphysiol.01006.2009 20299616

41. Linder-Ganz E, Engelberg S, Scheinowitz M, Gefen A. Pressure-time cell death threshold for albino rat skeletal muscles as related to pressure sore biomechanics. J Biomech. 2006;39: 2725–32. doi: 10.1016/j.jbiomech.2005.08.010 16199045

42. Ceelen KK, Stekelenburg A, Loerakker S, Strijkers GJ, Bader DL, Nicolay K, et al. Compression-induced damage and internal tissue strains are related. J Biomech. 2008;41: 3399–3404. doi: 10.1016/j.jbiomech.2008.09.016 19010470

43. Verver MM, Hoof J van, Oomens CWJ, Wismans JSHM, Baaijens FPT. A Finite Element Model of the Human Buttocks for Prediction of Seat Pressure Distributions. Comput Methods Biomech Biomed Engin. 2004;7: 193–203. doi: 10.1080/10255840410001727832 15512763

44. Luboz V, Petrizelli M, Bucki M, Diot B, Vuillerme N, Payan Y. Biomechanical modeling to prevent ischial pressure ulcers. J Biomech. 2014;47: 2231–2236. doi: 10.1016/j.jbiomech.2014.05.004 24873863

45. Al-Dirini RMA, Reed MP, Thewlis D. Deformation of the gluteal soft tissues during sitting. Clin Biomech. 2015;30: 662–668. doi: 10.1016/j.clinbiomech.2015.05.008 26032324

46. Shabshin N, Zoizner G, Herman A, Ougortsin V, Gefen A. Use of weight-bearing MRI for evaluating wheelchair cushions based on internal soft-tissue deformations under ischial tuberosities. J Rehabil Res Dev. 2010;47: 31. doi: 10.1682/jrrd.2009.07.0105 20437325

47. Linder-Ganz E, Shabshin N, Itzchak Y, Gefen A. Assessment of mechanical conditions in sub-dermal tissues during sitting: A combined experimental MRI and finite element approach. J Biomech. 2007;40: 1443–1454. doi: 10.1016/j.jbiomech.2006.06.020 16920122


Článek vyšel v časopise

PLOS One


2020 Číslo 1