Microfluidic-prepared DOTAP nanoparticles induce strong T-cell responses in mice


Autoři: Yasunari Haseda aff001;  Lisa Munakata aff002;  Jie Meng aff001;  Ryo Suzuki aff002;  Taiki Aoshi aff001
Působiště autorů: Vaccine Dynamics Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan aff001;  Laboratory of Drug and Gene Delivery Research, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan aff002;  Vaccine Dynamics Project, BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227891

Souhrn

For the induction of antigen-specific T-cell responses by vaccination, an appropriate immune adjuvant is required. Vaccine adjuvants generally provide two functions, namely, immune potentiator and delivery, and many adjuvants that can efficiently induce T-cell responses are known to have the combination of these two functions. In this study, we explored a cationic lipid DOTAP-based adjuvant. We found that the microfluidic preparation of DOTAP nanoparticles induced stronger CD4+ and CD8+ T-cell responses than liposomal DOTAP. The further addition of Type-A CpG D35 in DOTAP nanoparticles increased the induction of T-cell responses, particularly in CD4+ T cells. Further investigations revealed that the size of DOTAP nanoparticles, prepared buffer conditions, and physicochemical interaction with vaccine antigen are important factors for the efficient induction of T-cell responses with a relatively small antigen dose. These results suggested that microfluidic-prepared DOTAP nanoparticles plus D35 are a promising adjuvant for a vaccine that induces therapeutic T-cell responses for treating cancer and infectious diseases.

Klíčová slova:

Antigens – Cytotoxic T cells – Enzyme-linked immunoassays – Immune response – Immunologic adjuvants – Lipids – Nanoparticles – T cells


Zdroje

1. Panagioti E, Klenerman P, Lee LN, van der Burg SH, Arens R. Features of Effective T Cell-Inducing Vaccines against Chronic Viral Infections. Front Immunol. 2018;9:276–. doi: 10.3389/fimmu.2018.00276 29503649.

2. Robinson HL, Amara RR. T cell vaccines for microbial infections. Nature Medicine. 2005;11:S25. doi: 10.1038/nm1212 15812486

3. Hu Z, Ott PA, Wu CJ. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nature Reviews Immunology. 2018;18(3):168–82. doi: 10.1038/nri.2017.131 WOS:000426118500010. 29226910

4. Ott PA, Wu CJ. Cancer Vaccines: Steering T Cells Down the Right Path to Eradicate Tumors. Cancer Discovery. 2019;9(4):476–81. doi: 10.1158/2159-8290.CD-18-1357 WOS:000462990400021. 30862723

5. Sahin U, Tureci O. Personalized vaccines for cancer immunotherapy. Science. 2018;359(6382):1355–60. doi: 10.1126/science.aar7112 WOS:000428043600037. 29567706

6. O'Hagan DT, Valiante NM. Recent advances in the discovery and delivery of vaccine adjuvants. Nature Reviews Drug Discovery. 2003;2(9):727–35. doi: 10.1038/nrd1176 12951579

7. Zhao L, Seth A, Wibowo N, Zhao CX, Mitter N, Yu CZ, et al. Nanoparticle vaccines. Vaccine. 2014;32(3):327–37. doi: 10.1016/j.vaccine.2013.11.069 WOS:000330261400003. 24295808

8. Coffman RL, Sher A, Seder RA. Vaccine Adjuvants: Putting Innate Immunity to Work. Immunity. 2010;33(4):492–503. doi: 10.1016/j.immuni.2010.10.002 WOS:000284300200006. 21029960

9. Reed SG, Bertholet S, Coler RN, Friede M. New horizons in adjuvants for vaccine development. Trends in Immunology. 2009;30(1):23–32. doi: 10.1016/j.it.2008.09.006 WOS:000262970200004. 19059004

10. Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nature Medicine. 2013;19(12):1597–608. doi: 10.1038/nm.3409 WOS:000328181400028. 24309663

11. Brito LA, Malyala P, O’Hagan DT. Vaccine adjuvant formulations: A pharmaceutical perspective. Seminars in Immunology. 2013;25(2):130–45. doi: 10.1016/j.smim.2013.05.007 23850011

12. Foged C, Hansen J, Agger EM. License to kill: Formulation requirements for optimal priming of CD8(+) CTL responses with particulate vaccine delivery systems. Eur J Pharm Sci. 2012;45(4):482–91. Epub 2011/09/06. doi: 10.1016/j.ejps.2011.08.016 21888971.

13. Mutwiri G, Gerdts V, van Drunen Littel-van den Hurk S, Auray G, Eng N, Garlapati S, et al. Combination adjuvants: the next generation of adjuvants? Expert Review of Vaccines. 2011;10(1):95–107. doi: 10.1586/erv.10.154 21162624

14. Mount A, Koernig S, Silva A, Drane D, Maraskovsky E, Morelli AB. Combination of adjuvants: the future of vaccine design. Expert Review of Vaccines. 2013;12(7):733–46. doi: 10.1586/14760584.2013.811185 23885819

15. Pedersen GK, Andersen P, Christensen D. Immunocorrelates of CAF family adjuvants. Seminars in Immunology. 2018;39(C):4–13. doi: 10.1016/j.smim.2018.10.003 WOS:000454372200002. 30396811

16. Sun H-X, Xie Y, Ye Y-P. ISCOMs and ISCOMATRIX™. Vaccine. 2009;27(33):4388–401. doi: 10.1016/j.vaccine.2009.05.032 19450632

17. Garcon N, Chomez P, Van Mechelen M. GlaxoSmithKline Adjuvant systems in vaccines: concepts, achievements and perspectives. Expert Review of Vaccines. 2007;6(5):723–39. doi: 10.1586/14760584.6.5.723 WOS:000250656300017. 17931153

18. Chen W, Yan W, Huang L. A simple but effective cancer vaccine consisting of an antigen and a cationic lipid. 2008;57(4):517–30. doi: 10.1007/s00262-007-0390-4 17724588

19. Vasievich EA, Chen W, Huang L. Enantiospecific adjuvant activity of cationic lipid DOTAP in cancer vaccine. 2011;60(5):629–38. doi: 10.1007/s00262-011-0970-1 21267720

20. Yan W, Chen W, Huang L. Mechanism of adjuvant activity of cationic liposome: Phosphorylation of a MAP kinase, ERK and induction of chemokines. Molecular Immunology. 2007;44(15):3672–81. doi: 10.1016/j.molimm.2007.04.009 17521728

21. Gandhapudi SK, Ward M, Bush JPC, Bedu-Addo F, Conn G, Woodward JG. Antigen Priming with Enantiospecific Cationic Lipid Nanoparticles Induces Potent Antitumor CTL Responses through Novel Induction of a Type I IFN Response. Journal of Immunology. 2019;202(12):3524–36. doi: 10.4049/jimmunol.1801634 WOS:000470083000019. 31053626

22. Schmidt ST, Khadke S, Korsholm KS, Perrie Y, Rades T, Andersen P, et al. The administration route is decisive for the ability of the vaccine adjuvant CAF09 to induce antigen-specific CD8(+) T-cell responses: The immunological consequences of the biodistribution profile. Journal of Controlled Release. 2016;239:107–17. doi: 10.1016/j.jconrel.2016.08.034 WOS:000384700200011. 27574990

23. Korsholm KS, Hansen J, Karlsen K, Filskov J, Mikkelsen M, Lindenstrøm T, et al. Induction of CD8+ T-cell responses against subunit antigens by the novel cationic liposomal CAF09 adjuvant. 2014;32(31):3927–35. doi: 10.1016/j.vaccine.2014.05.050 24877765

24. Honda K, Ohba Y, Yanai H, Negishi H, Mizutani T, Takaoka A, et al. Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature. 2005;434(7036):1035–40. doi: 10.1038/nature03547 WOS:000228524600042. 15815647

25. Yasuda K, Yu P, Kirschning CJ, Schlatter B, Schmitz F, Heit A, et al. Endosomal translocation of vertebrate DNA activates dendritic cells via TLR9-dependent and -independent pathways. Journal of Immunology. 2005;174(10):6129–36. doi: 10.4049/jimmunol.174.10.6129 WOS:000228958900029. 15879108

26. Puangpetch A, Anderson R, Huang YY, Sermswan RW, Chaicumpa W, Sirisinha S, et al. Cationic Liposomes Extend the Immunostimulatory Effect of CpG Oligodeoxynucleotide against <span class = "named-content genus-species" id = "named-content-1">Burkholderia pseudomallei Infection in BALB/c Mice. Clinical and Vaccine Immunology. 2012;19(5):675–83. doi: 10.1128/CVI.05545-11 22441390

27. Akkaya M, Akkaya B, Sheehan PW, Miozzo P, Pena M, Qi CF, et al. T cell-dependent antigen adjuvanted with DOTAP-CpG-B but not DOTAP-CpG-A induces robust germinal center responses and high affinity antibodies in mice. Eur J Immunol. 2017;47(11):1890–9. Epub 2017/08/02. doi: 10.1002/eji.201747113 28762497; PubMed Central PMCID: PMC5880544.

28. Belliveau NM, Huft J, Lin PJC, Chen S, Leung AKK, Leaver TJ, et al. Microfluidic Synthesis of Highly Potent Limit-size Lipid Nanoparticles for In Vivo Delivery of siRNA. Molecular Therapy—Nucleic Acids. 2012;1:e37. doi: 10.1038/mtna.2012.28 23344179

29. Ma J, Lee SM-Y, Yi C, Li C-W. Controllable synthesis of functional nanoparticles by microfluidic platforms for biomedical applications–a review. Lab on a Chip. 2017;17(2):209–26. doi: 10.1039/c6lc01049k 27991629

30. Walsh C, Ou K, Belliveau NM, Leaver TJ, Wild AW, Huft J, et al. Microfluidic-based manufacture of siRNA-lipid nanoparticles for therapeutic applications. Methods in molecular biology (Clifton, NJ). 2014;1141:109–20. Epub 2014/02/26. doi: 10.1007/978-1-4939-0363-4_6 24567134.

31. Kastner E, Kaur R, Lowry D, Moghaddam B, Wilkinson A, Perrie Y. High-throughput manufacturing of size-tuned liposomes by a new microfluidics method using enhanced statistical tools for characterization. International Journal of Pharmaceutics. 2014;477(1):361–8. doi: https://doi.org/10.1016/j.ijpharm.2014.10.030

32. Zhao C-X, He L, Qiao SZ, Middelberg APJ. Nanoparticle synthesis in microreactors. Chemical Engineering Science. 2011;66(7):1463–79. https://doi.org/10.1016/j.ces.2010.08.039.

33. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. Journal of Molecular Biology. 1965;13(1):238–IN27. doi: 10.1016/s0022-2836(65)80093-6 5859039

34. Henriksen-Lacey M, Christensen D, Bramwell VW, Lindenstrøm T, Agger EM, Andersen P, et al. Liposomal cationic charge and antigen adsorption are important properties for the efficient deposition of antigen at the injection site and ability of the vaccine to induce a CMI response. Journal of Controlled Release. 2010;145(2):102–8. doi: 10.1016/j.jconrel.2010.03.027 20381556

35. Klinman DM. Immunotherapeutic uses of CpG oligodeoxynucleotides. Nature Reviews Immunology. 2004;4(4):249–59. doi: 10.1038/nri1329 15057783

36. Vollmer J, Krieg AM. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. 2009;61(3):195–204. doi: 10.1016/j.addr.2008.12.008 19211030

37. Saade F, Honda-Okubo Y, Trec S, Petrovsky N. A novel hepatitis B vaccine containing Advax, a polysaccharide adjuvant derived from delta inulin, induces robust humoral and cellular immunity with minimal reactogenicity in preclinical testing. Vaccine. 2013;31(15):1999–2007. Epub 2013/01/12. doi: 10.1016/j.vaccine.2012.12.077 23306367; PubMed Central PMCID: PMC3606636.

38. Morel S, Didierlaurent A, Bourguignon P, Delhaye S, Baras B, Jacob V, et al. Adjuvant System AS03 containing α-tocopherol modulates innate immune response and leads to improved adaptive immunity. 2011;29(13):2461–73. doi: 10.1016/j.vaccine.2011.01.011 21256188

39. Dupuis M, McDonald DM, Ott G. Distribution of adjuvant MF59 and antigen gD2 after intramuscular injection in mice. Vaccine. 1999;18(5):434–9. doi: https://doi.org/10.1016/S0264-410X(99)00263-7.

40. Le Bon A, Tough DF. Type I interferon as a stimulus for cross-priming. Cytokine & Growth Factor Reviews. 2008;19(1):33–40. doi: https://doi.org/10.1016/j.cytogfr.2007.10.007

41. Cho HJ, Hayashi T, Datta SK, Takabayashi K, Van Uden JH, Horner A, et al. IFN-αβ Promote Priming of Antigen-Specific CD8+ and CD4+ T Lymphocytes by Immunostimulatory DNA-Based Vaccines. The Journal of Immunology. 2002;168(10):4907–13. doi: 10.4049/jimmunol.168.10.4907 11994440

42. Durand V, Wong SY, Tough DF, Le Bon A. Shaping of adaptive immune responses to soluble proteins by TLR agonists: A role for IFN-α/β. Immunology & Cell Biology. 2004;82(6):596–602. doi: 10.1111/j.0818-9641.2004.01285.x 15550117


Článek vyšel v časopise

PLOS One


2020 Číslo 1